DOI QR코드

DOI QR Code

A proposed image stitching method for web-based panoramic virtual reality for Hoseo Cyber Museum

호서 사이버 박물관: 웹기반의 파노라마 비디오 가상현실에 대한 효율적인 이미지 스티칭 알고리즘

  • Khan, Irfan (Dept. of Computer Engineering, Hoseo University) ;
  • Soo, Hong Song (Dept. of Computer Engineering, Hoseo University)
  • Received : 2012.09.04
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

It is always a dream to recreate the experience of a particular place, the Panorama Virtual Reality has been interpreted as a kind of technology to create virtual environments and the ability to maneuver angle for and select the path of view in a dynamic scene. In this paper we examined an efficient method for Image registration and stitching of captured imaged. Two approaches are studied in this paper. First, dynamic programming is used to spot the ideal key points, match these points to merge adjacent images together, later image blending is used for smooth color transitions. In second approach, FAST and SURF detection are used to find distinct features in the images and nearest neighbor algorithm is used to match corresponding features, estimate homography with matched key points using RANSAC. The paper also covers the automatically choosing (recognizing, comparing) images to stitching method.

파노라마 가상현실이란 특정 장소의 경험을 재현하는 방식으로, 현실 세계의 장소에 직접 가보지 않고 가상현실 속의 사물이나 정보를 보다 쉽고 빠르게 탐색하고 습득 할 수 있다. 본 논문에서는, 우리는 이상적인 키 포인트를 탐지하는 동적 프로그래밍을 사용하여 함께 이 지점과 인접한 이미지를 병합하고, 부드러운 색상 전환을 위해 이미지를 혼합하는데 사용된다. FAST와 SURF 탐지는 이미지의 확실한 특징을 찾는데 사용되고, 가장 가까운 이웃 알고리즘은 해당되는 특징을 일치시키는데 사용되며, RANSAC을 사용하여 일치하는 키 포인트를 homography로 판단한다. 이러한 방법으로 이미지를 자동 선택하여 스티칭하는 방법을 사용한다.

Keywords

References

  1. 10. Harris, C., Stephens, M.: A combined corner and edge detector. (1988)
  2. Florack, L.M.J., Haar Romeny, B.M.t., Koenderink, J.J., Viergever, M.A.: General intensity transformations and differential invariants (1994).
  3. Freeman, W.T., Adelson, E.H. The design and use of steerable filters (1991).
  4. Carneiro, Jepson, Multi-scale phase-based local features (2003)
  5. Wikipedia: http://en.wikipedia.org/wiki/SURF
  6. R. Hartley and A. Zisserman. Multiple View Geomerty in Computer Vision. Cambridge University Press, second edition, 2003.
  7. R. Hartley. In defense of the eight-point algorithm, June 1997.
  8. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: CVPR (2). (2004).
  9. Mikolajczyk, K.Schmid: A performance evaluation of local descriptors. PAMI (2005)
  10. Brudea and Coiffet (1994) Virtuality Reality Techonology, Volume1.
  11. Konstantinos G. Derpanis, "Overview of the RANSAC Algorithm" May 13, 2010.