DOI QR코드

DOI QR Code

Supporting Service Continuity in OFDMA Systems

OFDMA 시스템에서 서비스 연속성 지원 방안

  • Lee, Jong-Chan (Dept. of Computer Information Eng., Kunsan National University) ;
  • Park, Sang-Joon (Dept. of Computer Information Eng., Kunsan National University)
  • 이종찬 (군산대학교 컴퓨터정보공학과) ;
  • 박상준 (군산대학교 컴퓨터정보공학과)
  • Received : 2012.11.07
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

The objective of this paper is to provide service continuity based on an efficient subchannel allocation in OFDMA systems. The resource management for handover are necessary to maintain the QoS requirements of different multimedia applications because the service continuity may be defected by some delay and information loss. Therefore we propose two subchannel management schemes applied to OFDMA systems. Firstly, a superposition allocation of interference subchannels is achieved by modifying a frequency reuse scheme, using co-subchannel interference principle. Secondly for handover applications, we suggest a novel subchannel reservation scheme to adjust the number of allocated channels, depending on the different characteristics and diverse quality of mobile multimedia applications. Simulation results show that the total throughput for the proposed method is increased up to 20% at average and peak arrivals and the handover failure rate is decreased to about 25%, as compared to the conventional method.

본 논문의 목적은 다중 셀 OFDMA 시스템에서 효율적인 부채널 할당에 근거하여 서비스 연속성을 제공하는 것이다. 특히 지연 및 손실에 의해 서비스 지속성에 악영향을 야기할 가능성이 있으므로 다양한 이동 멀티미디어 서비스의 QoS 요구사항을 유지하기 위하여 핸드오버를 위한 자원 관리 방안이 필요하다. 따라서 본 연구에서는 두 개의 부채널 할당 방법을 제안한다. 우선, 동일 부채널 간섭 원리를 사용하여 주파수 재사용 기법을 확장함으로서 간섭 채널의 중첩 할당 방식이 제안되고, 둘째로 핸드오버 요구를 위하여, 이동 멀티미디어의 서로 다른 서비스 특성과 서비스의 질에 따라서 할당된 채널의 수를 조정하는 새로운 부채널 할당 방법을 제안한다. 시뮬레이션을 통하여, 제안된 방법이 데이터 처리량을 20%까지 증가시키며, 핸드오버 실패율을 25% 정도 감소시킬 수 있음을 보인다.

Keywords

References

  1. I-Kang Fu, Yih-Shen Chen, "Multicarrier Technology for 4G WiMAX System," WiMAX/LTE Update, IEEE Communications Magazine, August 2010.
  2. IEEE Std 802.16-2009, "Part 16 : Air Interface for Broadband Wireless Access Systems," IEEE Standard for Local and metropolitan area networks, October 2010.
  3. Nageen Himayat, Shilpa Talwar, "Interference Management for 4G Celluar Standards," WiMAX/LTE Update, IEEE Communications Magazine, August 2010. DOI: http://dx.doi.org/10.1109/MCOM.2010.5534591
  4. IEEE Std 802.16m-2011, "Part 16 : Air Interface for Broadband Wireless Access Systems," Amendment 3 : Advanced Air Interface, May 2011.
  5. Z. Abichar, and J.M. Chang, "WiMAX vs. LTE: Who Will Lead the Broadband Mobile Internet," IEEE IT Professional, Vol. 12, No. 3, pp. 26-32, May 2010. DOI: http://dx.doi.org/10.1109/MITP.2010.47
  6. J. Liu, R. Love, K. Stewart, and M.E. Buckley, "Design and Analysis of LTE Physical Downlink Control Channel," Proc. IEEE Int. Vehicular Technology Conf. (VTC), pp. 1-5, 2009. DOI: http://dx.doi.org/10.1109/VETECS.2009.5073490
  7. J. Shi and A. Hu, "Radio Resource Allocation Algorithm for the Uplink OFDMA System ," in IEEE International Conference on Communications Workshops 08, pp. 11-15, 19-23, May 2008. DOI: http://dx.doi.org/10.1109/ICCW.2008.7
  8. L. Yanhui, W. Chunming, Y. Changchuan, and Y. Guangxin, "Downlink Scheduling and Radio Resource Allocation in Adaptive OFDMA Wireless Communication Systems for User-Individual QoS," International Journal of Electrical and Electronics Engineering, Vol. 3, No. 2, pp. 97-101, 2009.
  9. Yongho Kim, Inuk Jung, "Advanced Handover Schemes in IMT-Advanced Systems," WiMAX/LTE Update, IEEE Communications Magazine, August 2010. DOI: http://dx.doi.org/10.1109/MCOM.2010.5534590
  10. Shafi Bashar and Zhi Ding, "Admission Control and Resource Allocation in a heterogeneous OFDMA Wireless Networks," IEEE Transactions on Wireless Communications, Vol. 8, No. 8, August 2009. DOI: http://dx.doi.org/10.1109/TWC.2009.080844