DOI QR코드

DOI QR Code

A Weighted Mean Squared Error Approach to Multiple Response Surface Optimization

다중반응표면 최적화를 위한 가중평균제곱오차

  • Jeong, In-Jun (Department of Management, Daegu University) ;
  • Cho, Hyun-Woo (Department of Industrial and Management Engineering, Daegu University)
  • Received : 2012.10.26
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

Multiple response surface optimization (MRSO) aims at finding a setting of input variables which simultaneously optimizes multiple responses. The minimization of mean squared error (MSE), which consists of the squared bias and variance terms, is an effective way to consider the location and dispersion effects of the responses in MRSO. This approach basically assumes that both the terms have an equal weight. However, they need to be weighted differently depending on a problem situation, for example, in case that they are not of the same importance. This paper proposes to use the weighted MSE (WMSE) criterion instead of the MSE criterion in MRSO to consider an unequal weight situation.

본 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 동시에 고려하여, 입력변수의 최적 조건을 찾는 것을 목적으로 한다. 지금까지 다중반응표면 최적화를 위하여 다양한 방법이 제안되어 왔는데, 그 중 평균제곱오차 최소화법은 다수의 반응변수의 평균과 표준편차를 동시에 고려하여 최적화하는 방법이다. 이 방법은 기본적으로 평균과 표준편차가 동일한 가중치를 가지고 있다는 것을 전제로 하고 있다. 그러나 문제의 상황에 따라 평균과 표준편차에 서로 다른 가중치를 부여해야 하는 경우도 있다. 이에 본 논문에서는 기존의 평균제곱오차를 확대하여 평균과 표준편차에 서로 다른 가중치도 부여할 수 있도록 가중평균제곱오차 최소화법을 제안하고자 한다.

Keywords

References

  1. Box, G. E. P. and Draper, N. R., Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, NY, 1987.
  2. Khuri, A. I. and Cornell, J., Response Surfaces: Designs and Analyses, Dekker, New York, NY, 1996.
  3. Myers, R. H. and Montgomery, D. C., Response Surface Methodology, 2nd ed., John Wiley & Sons, New York, NY, 2002.
  4. Khuri, A. I., "Multiresponse Surface Methodology", In Handbook of Statistics: Design and Analysis of Experiment (Vol. 13) (eds. A. Ghosh and C. R. Rao), pp. 377-406, 1996.
  5. Myers, R. H., Khuri, A., and Carter, W. H., Jr., "Response Surface Methodology : 1966-1988", Technometrics, Vol. 31, No. 2, pp. 137-157, 1989. DOI: http://dx.doi.org/10.2307/1268813
  6. Myers, R. H., "Response Surface Methodology - Current Status and Future Directions", Journal of Quality Technology, Vol. 31, No. 1, pp. 30-44, 1999.
  7. Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., and Kowalski, S. M., "Response Surface Methodology: A Retrospective and Literature Survey", Journal of Quality Technology, Vol. 36, No. 1, pp. 53-77, 2004.
  8. Ardakani, M. K. and Wulff, S. S., "An Overview of Optimization Formulations for Multiresponse Surface Problems", Quality and Reliability Engineering International (Published online in Wiley Online Library (wileyonlinelibrary.com), 2012. DOI: http://dx.doi.org/10.1002/qre.1288
  9. Jeong, I. "Multiresponse Optimization: A Literature Review and Research Opportunities", Journal of the Korean Society for Quality Management, Vol. 39, No. 3, pp. 377-390, 2011.
  10. Taguchi, G. and Wu, Y., "Off-line Quality Control", Central Japan Quality Control Association (available from American Supplier Institute, Dearborn, MI), 1979.
  11. Ross, P. J., Taguchi Techniques for Quality Engineering, McGraw-Hill Book Company, San Francisco, CA, 1988.
  12. Köksoy, O., "Multiresponse Robust Design: Mean Square Error (MSE) Criterion", Applied Mathematics and Computation, Vol. 175, No. 2, pp. 1716-1729, 2006. DOI: http://dx.doi.org/10.1016/j.amc.2005.09.016
  13. Pignatiello, J.. "Strategies for Robust Multiresponse Quality Engineering". IIE Transactions, Vol. 25, No. 3, pp. 5-15, 1993. DOI: http://dx.doi.org/10.1080/07408179308964286
  14. Ko, Y., Kim, K., and Jun, C., "A New Loss Function- Based Method for Multiresponse Optimization", Journal of Quality Technology, Vol. 37, No. 1, pp. 50-59, 2005.
  15. Ames, A. E., Mattucci, N., MacDonald, S., Szonyi, G., and Hawkins, D. M., "Quality Loss Functions for Optimization Across Multiple Response Surfaces", Journal of Quality Technology, Vol. 29, No. 3, pp. 339-346, 1997.
  16. Rheem, S. and Lee, W. "Multiresponse Optimization in Response Surface Analysis: A Method by Minimization of Weighted Sum of Estimates of Expected Squared Relative Errors", Journal of the Korean Society for Quality Management, Vol. 33, No. 1, pp. 73-82, 2004.
  17. Lijuan, S., Yu, Z., and Jun, Y., "Mean Square Error Criteria to Multiple Quality Characteristics Robust Design by the Weighted Tchebycheff Method", Advanced Materials Research, Vols. 118-120, pp. 881-885, 2010. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.118-120.881
  18. Shin, S., Samanlioglu, F., Cho, B. B., and Wiecek, M. M., "Computing Trade-Offs in Robust Design: Perspectives of the Mean Squared Error", Computers and Industrial Engineering, Vol. 60, No. 2, pp. 248-255, 2011. DOI: http://dx.doi.org/10.1016/j.cie.2010.11.006
  19. Vining, G., "A Compromise Approach to Multiresponse Optimization". Journal of Quality Technology, Vol. 30, No. 4, pp. 309-313, 1998.
  20. Koksoy, O. and Yalcinoz, T., "Mean Square Error Criteria to Multiresponse Process Optimization by a New Genetic Algorithm", Applied Mathematics and Computation, Vol. 175, No. 2, pp. 1657-1674, 2006. DOI: http://dx.doi.org/10.1016/j.amc.2005.09.011
  21. Koksoy, O., "A Nonlinear Programming Solution to Robust Multi-Response Quality Problem", Applied Mathematics and Computation, Vol. 196, No. 2, pp. 603-612, 2008. DOI: http://dx.doi.org/10.1016/j.amc.2007.06.023
  22. Keeney, R. and Raiffa, H., Decisions with Multiple Objectives, Wiley, New York, NY, 1976.
  23. Hwang, C. L., Masud, A. S. M., Paidy, S. R., and Yoon, K., Multiple Objective Decision Making - Methods and Applications (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag, Berlin, 1979. DOI: http://dx.doi.org/10.1007/978-3-642-45511-7
  24. Steuer, R. E., Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley & Sons, New York, NY, 1986.
  25. Lin, D. and Tu, W., "Dual Response Surface Optimization", Journal of Quality Technology, Vol. 27, No. 1, pp. 34-39, 1995.
  26. Ding, R., Lin, D. K. J., and Wei, D., "Dual Response Surface Optimization: A Weighted MSE Approach", Quality Engineering, Vol. 16, No. 3, pp. 377-385, 2004. DOI: http://dx.doi.org/10.1081/QEN-120027940
  27. Jeong, I., Kim, K., and Chang, S. Y., "Optimal Weighting of Bias and Variance in Dual Response Surface Optimization", Journal of Quality Technology, Vol. 37, No. 3, pp. 236-247, 2005.
  28. Lee, D. and Kim, K., "Interactive Weighting of Bias and Variance in Dual Response Surface Optimization", Expert Systems with Applications, Vol. 39, No. 5, pp. 5900-5906, 2012. DOI: http://dx.doi.org/10.1016/j.eswa.2011.11.114
  29. Romano, D., Varetto, M., and Vicario, G., "Multiresponse Robust Design: A General Framework Based on Combined Array", Journal of Quality Technology, Vol. 36, No. 1, pp. 27-37, 2004.
  30. Miettinen, K., "Some Methods for Nonlinear Multi- Objective Optimization", Lecture Notes in Computer Science, Vol. 1993, pp. 1-20, 2001. DOI: http://dx.doi.org/10.1007/3-540-44719-9_1

Cited by

  1. A Posterior Preference Articulation Method to the Weighted Mean Squared Error Minimization Approach in Multi-Response Surface Optimization vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.7061