References
- Biot, M.A. and Willis, D.G. (1957), "The elastic coefficients of a theory of consolidation", J. Appl. Mech. T. ASME, 29, 594-601.
- Biot, M.A. (1955), "Theory of elasticity and consolidation for a porous anisotropic solid", J. Appl. Phys., 26(2), 182-185. https://doi.org/10.1063/1.1721956
- Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid", J. Acou. Soc. Am., 28(2), 168-178. https://doi.org/10.1121/1.1908239
- Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2003), "Modeling of cyclic mobility in saturated cohesionless soils", Int. J. Plasticity, 19(6), 883-905. https://doi.org/10.1016/S0749-6419(02)00010-4
- Finn, W.D.L., Lee, K.W. and Martin, G.R. (1977), "An effective stress model for liquefaction", J. Geotech. Eng. Div. ASCE, 103(GT6), 513-533.
- Katona, M.G. and Zienkiewicz, O.C. (1985), "A unified set of single step algorithms Part 3: the Beta-m method, a generalization of the Newmark scheme", Int. J. Numer. Meth. Eng., 21(7), 1345-1359. https://doi.org/10.1002/nme.1620210713
- Kramer, S.L. and Seed, B.H. (1988), "Initiation of static liquefaction under static loading conditions", J. Geotech. Eng. Div. ASCE, 114(4), 412-430. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:4(412)
- Ladhane, K.B. and Sawant, V.A. (2012), "Dynamic response of 2 piles in series and parallel arrangement", J. Eng., 16(4), 63-72. https://doi.org/10.4186/ej.2012.16.4.63
- Liyanapathirana, D.S. and Poulos, H.G. (2002), "Numerical simulation of soil liquefaction due to earthquake loading", Soil Dyn. Earthq. Eng., 22(7), 511-523. https://doi.org/10.1016/S0267-7261(02)00037-4
- Mesgouez, A., Lefeuve-Mesgouez, G. and Chambarel, A. (2005), "Transient mechanical wave propagation in semi-infinite porous media using a finite element approach", Soil Dyn. Earthq. Eng., 25(6), 421-430. https://doi.org/10.1016/j.soildyn.2005.04.003
- Nemat-Nasser, S. and Shokooh, A. (1979), "A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing", Can. Geotech. J., 16(4), 659-678. https://doi.org/10.1139/t79-076
- Nova, R. and Wood, D.M. (1982), A Constitutive Model for Soil Under Monotonic and Cyclic Loading, Soil Mechanics-Transient and Cyclic Loads (Edited by G.N. Pande and O.C. Zienkiewicz), John Wiley & Sons Ltd., New York, USA.
- Oka, F., Yashima, A., Shibata, T., Kato, M. and Uzuoka, R. (1994), "FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model", Appl. Sci., 52(3), 209-245. https://doi.org/10.1007/BF00853951
- Pastor, M., Zienkiewicz, O.C. and Chan, A.H.C. (1990), "Generalized plasticity and the modeling of soil behavior", Int. J. Numer. Analyt. Meth. Geomech., 14(3), 151-190. https://doi.org/10.1002/nag.1610140302
- Patil, V.A., Sawant, V.A. and Deb, K. (2013b), "3-D finite element dynamic analysis of rigid pavement using infinite elements", Int. J. Geomech. ASCE, 13(5), 533-544. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000255
- Patil, V.A., Sawant, V.A. and Deb, K. (2013a), "2-D finite element analysis of rigid pavement considering dynamic vehicle pavement interaction effects", Appl. Math. Model., 37(3), 1282-1294. https://doi.org/10.1016/j.apm.2012.03.034
- Prevost, J.H. (1985), "A simple plasticity theory for frictional cohesionless soils", Soil. Dyn. Earthq. Eng., 4(1), 9-17.
- Prevost, J.H. (1989), DYNA1D, A Computer Program for Nonlinear Seismic Site Response Analysis: Technical Documentation, Technical Report NCEER-89-0025, National Center for Earthquake Engineering Research, State University of New York at Buffalo, NY, USA.
- Sadeghian, S. and Manouchehr, L.N. (2012), "Using state parameter to improve numerical prediction of a generalized plasticity constitutive model", J. Comp. Geosci., 51, 255-268.
- Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found. Div. ASCE, 92(SM6), 1249-1273.
- Seed, H.B. and Lee, K.L. (1966), "Liquefaction of saturated sands during cyclic loading", J. Geotech. Eng. ASCE, 92(SM6), 105-134.
- Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., ASCE, 111(12), 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
- Seed, H.B. (1979), "Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes", J. Geotech. Eng. Div. ASCE, 105(GT2), 201-255.
-
Simon, B.R., Wu. J.S.S., Zienkiewicz, O.C. and Paul, D.K. (1986), "Evaluation of u-w and u-
${\pi}$ finite element methods for the dynamic response of saturated porous media using one-dimensional models", SIAM. J. Numer. Anal., 10(5), 461-482. - Taiebat, M., Shahir, H. and Pak, A. (2007), "Study of pore pressure variation during liquefaction using two constitutive models for sand", Soil. Dyn. Earthq. Eng., 27(1), 60-72. https://doi.org/10.1016/j.soildyn.2006.03.004
- Zienkiewicz, O.C. and Mroz, Z. (1984), Generalized Plasticity Formulation and Applications to Geomechanics, Mech. Eng. Mater., (Edited by C.S. Desai and R.H. Gallagher), Wiley, New York, USA.
- Zienkiewicz, O.C. and Shiomi, T. (1984), "Dynamic behaviour of saturated porous media; The generalized biot formulation and its numerical solution", Numer. Meth., 8(1), 71-96.
Cited by
- On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems vol.13, pp.8, 2016, https://doi.org/10.1590/1679-78252450
- Parametric study on flexible footing resting on partially saturated soil vol.3, pp.2, 2014, https://doi.org/10.12989/csm.2014.3.2.233
- Analyzing the Deformation of Multilayered Saturated Sandy Soils under Large Building Foundation vol.23, pp.9, 2013, https://doi.org/10.1007/s12205-019-0187-y