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Adaptive Video Streaming over HTTP with Dynamic
Resource Estimation

Truong Cong Thang, Hung T. Le, Hoc X. Nguyen, Anh T. Pham, JungWon Kang, and Yong Man Ro

Abstract: Adaptive hypertext transfer protocol (HTTP) streaming
has become a new trend to support adaptivity in video delivery. An
HTTP streaming client needs to estimate exactly resource availabil-
ity and resource demand. In this paper, we focus on the most impor-
tant resource which is bandwidth. A new and general formulation
for throughput estimation is presented taking into accountprevi-
ous values of instant throughput and round trip time. Besides, we
introduce for the first time the use of bitrate estimation in HTTP
streaming. The experiments show that our approach can effectively
cope with drastic changes in connection throughput and video bi-
trate.

Index Terms: Adaptivity, bitrate estimation, HTTP streaming,
throughput estimation.

I. INTRODUCTION

Thanks to the abundance of web platforms and broadband
connections, hypertext transfer protocol (HTTP) streaming has
become a cost effective means for multimedia delivery [1]–
[3]. Besides, due to the heterogeneity of today’s communica-
tion networks, adaptivity is the most important requirement for
any streaming client [3]. Especially, transmission control pro-
tocol (TCP), the underlying layer of HTTP, is notorious for its
throughput fluctuations [4]. Moreover, the bitrate of a video en-
coded in variable bitrate (VBR) mode may also vary widely ac-
cording to the characteristics of the content [5]. So, the mis-
match of both throughput and video bitrate is a big challengein
video streaming.

For adaptivity to networks and terminal capabilities, an HTTP
streaming provider should generate multiple alternatives(or ver-
sions) of an original video as well as the signaling metadatathat
contains the characteristics of the alternatives (such as bitrate,
resolution, etc.) [6]. Based on the metadata and status of ter-
minal/networks, the client makes decisions on which/when me-
dia parts are downloaded. This client-based approach is funda-
mentally different from the conventional server-based approach
(e.g., [7]), where the server plays a decisive role in streaming. In
order to make good decisions, the client needs to estimate cor-
rectly 1) resource availability and 2) resource demands. Inthis
paper, we focus on the most important resource type, which is
bandwidth/bitrate.
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In video streaming, if the actual throughput is lower than the
estimated throughput or similarly if the actual video bitrate is
higher than the specified bitrate, video data transmission will be
delayed and the decoding buffer will quickly become empty. To
cope with errors in both estimated throughput and specified
video bitrate, a client should buffer some amount of video data
before it can start playing [3], [9]. Obviously, if the amount of
buffered data is large, the client can better cope with the future
mismatches. However, this action results in the so-calledinitial
buffering delay (sometimes up to tens of seconds), which badly
affects the quality of experience, especially for live streaming
[9]. So, the accuracy of throughput and video bitrate informa-
tion will be crucial to maintain a low and stable buffer levelfor
a streaming client. To this end, the main contributions of this
paper are as follows.

First, we propose a new and general formulation for through-
put estimation taking into account previous values of instant
throughput and round trip time (RTT). Currently, throughput
estimation is based on the previous segment throughputs [3],
[10], [11], which are average values that may not capture thefast
bandwidth fluctuations when the segment duration is long. Sec-
ond, we introduce for the first time the use of bitrate estima-
tion in HTTP streaming. With bitrate estimation, the clientwill
be able to dynamically select the highest possible bitrate at any
time. So far, previous studies have dealt with constant bitrate
(CBR) video only. To the best of our knowledge, our previous
standard contribution [12] is the first work that has highlighted
the importance of instant bitrate information in HTTP stream-
ing. As shown later, it is interesting that this solution mayen-
able CBR-streaming even though the video is encoded in VBR
mode.

The paper is organized as follows. In Section II, we first pro-
vide an overview of adaptive HTTP streaming, bitrate concept,
and related work. A systematic method to estimate the through-
put is proposed in Section III. In Section IV, we present the
mechanisms for the client to estimate the instant bitrate for
VBR video content. Experiments with different scenarios are
presented in Section V. Finally, conclusions and future work are
given in Section VI.

II. OVERVIEW OF ADAPTIVE HTTP STREAMING

A. HTTP Streaming and Bitrate Adaptation

As discussed in [3], [13], the general architecture of adap-
tive HTTP streaming consists of servers, delivery networks, and
clients. Video versions together with their metadata are hosted
at some servers and will be requested by the client. Based on
the metadata and status of terminal/networks, the decisionen-
gine at the client makes decisions on which/when media parts
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Fig. 1. Hierarchy of content division in MPEG DASH.

are downloaded.
Recently, a new standard called dynamic adaptive streaming

over HTTP (DASH) has been developed by international or-
ganization for standardization (ISO)/international electrotechni-
cal commission (IEC) moving picture experts group (MPEG),
specifying the metadata and media formats exchanged between
clients and servers [14]. In MPEG DASH’s terminology, the
metadata is calledmedia presentation description (MPD). A
long content item could be divided into one or more tempo-
ral chapter (calledperiod). Alternatives (calledrepresentations)
having some common characteristics (e.g., same content com-
ponent) are grouped into anadaptation set. Further, each repre-
sentation could be divided into mediasegments. An illustration
of media division hierarchy is shown in Fig. 1. More informa-
tion about the structure and basic concepts of DASH could be
found in [2], [13].

Media will be delivered by a sequence of HTTP request-
response transactions. In most cases, for each request fromthe
client, the server will send one segment. The term “initial buffer-
ing” in this paper means the length (in seconds) of media needed
in the buffer before the playout can start.

HTTP streaming can be applied to both on-demand streaming
and live streaming. The main difference between these two cases
is the available time of segments. In live streaming, the time dis-
tance between the requests of two consecutive segments is ap-
proximately the duration of the first segment. So, if segments
have the same duration ofτ seconds, the distance between re-
quests will beτ as well. Meanwhile, in on-demand streaming,
requests could be sped up to quickly fill the buffer [15]. Note
that in live streaming, the playback takes place with a shortde-
lay (typically less that 10 s), so the client should maintaina small
buffer.

As we focus on the difficult problem of maintaining a low and
stable buffer level, the initial buffering is also the target buffer
level to be kept during a session.

In general, the process of bitrate adaptation takes into account
1) the estimated throughput and 2) the bitrates of alternatives
which are specified in the metadata (MPD). For each segment
interval, the bitrate can be decided as the highest value of the
alternatives’ specified bitrates that is smaller than the estimated
throughput. Further, if the client has the ability to estimate in-
stant bitrates of alternatives, the estimated bitrates will be used
instead of specified bitrates. Throughput estimation and bitrate
estimation will be tackled respectively in Sections III andIV.

Fig. 2. Illustration of bitrate B with initial delay d0.

B. Bitrate Concept

Though bitrate is one of the most important concepts in video
transport, its definition is actually not simple. The definition of
bitrate depends on two basic factors, namely initial delay and
play time instant [16]–[18]. Note that this initial delay isspecific
to the context of bitrate definition; it is different from theinitial
buffering delay which is used to cope with the fluctuations of
connection throughput.

Fig. 2 shows a playout curve (piece-wise curve) of a video
stream, which represents the accumulative played data sizewith
respect to time. This playout curve consists of four intervals
{(ti, ti+1)|0 ≤ i ≤ 3} corresponding to four segments of the
video. The slope of the curve in each interval is the average
bitrate of the corresponding media segment. Suppose that, at
time td, the client starts receiving video data at a rateB; then
the client starts playing the video data at timet0. The value
d0 = t0 − td is called initial delay, which is the duration the
client must wait before consuming the data. Given an initialde-
lay d0, the bitrate of the whole video stream is the minimum
slopeB of a tangent line that starts from point(td, 0) and is
never lower than the playout curve at any time instant.

Obviously, the larger the initial delay is, the lower the bi-
trateB becomes. However, this pair of bitrate-delay is just valid
when the video is played continuously from the beginning to
the end. If the user wants to play fromt2 (through random ac-
cess/seeking), the initial delay must bed2 to maintain the same
value of bitrateB. If initial delay d0 (d0 ≤ d2) should be
maintained, the defined bitrate at this point must be higher than
B. So, the value of bitrate is highly dependent on the targeted
play time instant (or random access point).

In the standardization process of DASH, the relationship of
different initial delays and corresponding bitrates has been dis-
cussed in [18], and the notion of instant bitrate (or segmentbi-
trate) was first presented in [12]. After several rounds of revi-
sion, the bitrate is finally derived by using the same initialdelay
for any random access point [14]. That means, it isthe high-
est value of instant bitrates given a fixed initial delay. In DASH
syntax, the initial delay and bitrate are represented by attributes
@minBufferTime and@bandwidth respectively.

In IETF Internet-Draft “HTTP Live Streaming”, the definition
of bitrate also specifies that video bitrate is the highest segment
bitrate of all segments of an alternative [19]. Because initial de-
lay is not specified in the bitrate definition of [19], a segment
bitrate can be understood as the average segment bitrate with



THANG et al.: ADAPTIVE VIDEO STREAMING OVER HTTP WITH DYNAMIC RESOURCEESTIMATION 637

initial delay equal to 0. With this definition, the slope of segment
(t2, t3), which is higher than the slopes of other segments, is the
very representative bitrate of the above stream. For simplicity,
in the following, segment bitrate means the average bitrateof a
segment.

So, in existing HTTP streaming standards, the highest seg-
ment bitrate of an alternative is used as the representativebi-
trate of the alternative. This is obviously due to safety reason
in adaptive streaming. However, for VBR video, this definition
may result in a very poor bandwidth usage as shown later in
Sections IV and V.

C. Related Work

Some recent work provides good reviews of HTTP streaming
which mostly aims at delivering multimedia via the Web [1],
[2]. As for DASH, overviews and basic ideas behind the devel-
opment of the standard are highlighted in [2], [13]. A detailed
analysis on the use of DASH for live service is presented in [9],
where an initial buffering of about 2 segment durations is sug-
gested. Detailed investigations of adaptivity in some commercial
clients are carried out in [15], [20], providing some insights into
the behaviors of the clients.

In [10], the measure of segment fetch time is used to de-
termine requested video bitrates in an aggressive decreaseand
step-wise increase manner (like TCP congestion control [4]). In-
stead of using a TCP-like mechanism, a reliable estimation of
throughput for city commuters using the prior-knowledge of
commuting routes (e.g., metro/bus tracks) is used to determine
video bitrate [21]. In [11], a Java client for HTTP streaming
on Android platform is developed and different algorithms us-
ing different throughput estimation ways are compared. In [3],
we presented a novel approach for throughput estimation, which
is stable to short-term fluctuations while responding quickly to
large fluctuations of the networks. Also, it is experimentally
shown that an initial buffering delay of two segment durations
could be achieved [3]. In [22], [23], the issues of stabilityand
fairness when there are multiple clients or cross-traffic are in-
vestigated. To improve the stability, a special point of [23] is the
use of a randomized scheduler for requesting media segments.

Bitrate estimation has long been an interesting research topic
[24]–[27]. For network traffic control, if the output video bi-
trate from a live source is estimated to be higher than connec-
tion throughput, some bitrate scaling operation should be ap-
plied to avoid potential congestion [28]. Besides, a correct esti-
mate of video bitrate would help providers to efficiently manage
network resources [17]. Yet, there have been no studies on the
use of bitrate estimation for HTTP streaming. To the best of our
knowledge, [12] is the first work that discusses the importance
of instant bitrate in HTTP streaming.

III. THROUGHPUT ESTIMATION

As mentioned, media segments are delivered by a sequence of
HTTP request-response transactions. In this section, we just fo-
cus on the sequence of received segments, without considering
their alternative indexes. The throughput in general is calculated
by dividing the amount of data (data size) by the delivery inter-
val. In fact, the difference between various throughput metrics
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Fig. 3. Proposed framework of throughput estimation.
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Fig. 4. Illustration of download throughput samples.

is due to the very choice of delivery interval.
The general framework of our method is shown in Fig. 3.

Here, feature extraction block provides one or more throughput
related parameters of the previous segments. Based on the fea-
tures, the controller block will decide to adjust the computation
model in the throughput estimation block.

Using this framework, in [3], we presented a throughput esti-
mation method that is based on previous segment throughputs.
The segment throughput is computed by dividing the segment
data size by the request-response duration, which is from the in-
stant of sending the request to the instant of receiving the last
byte of the response.

As discussed in [3], [11], the aggressive method, where the
last segment throughput is simply used as the estimated through-
put, currently is the most responsive method to capture the dy-
namic changes of throughput. However, when the segment du-
ration is long (e.g., 8–10 s as in [19]), that method may not be
effective to track the fast fluctuations of the connection.

To cope with this problem, we present a new and gen-
eral formulation based on “download throughput” samples and
RTT. Download throughput is computed by dividing the seg-
ment data size by the download duration, which is from the in-
stant of receiving the first byte of the response to the instant
of receiving the last byte of the response. A download through-
put sample is an instant download throughput, computed overa
short interval (e.g., 1 s) during downloading a segment. Fig. 4 il-
lustrates download throughput samples (upward arrows) andthe
related concepts.

Before delving into the details, let’s have the following nota-
tions:
– Dp(i): The presentation duration of segmenti

– De(i): The expected download duration for segmenti

– T e
d (i): The estimated download throughput for segmenti

– RTT (i): The duration between the instant of sending the re-
quest for segmenti and the instant of receiving the first byte
of the corresponding response.

– Td(i, j): Thejth sample of download throughput of segment
i.
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– TD(i): The sequence of (download) throughput samples of
segmenti, i.e.,TD(i) = {Td(i, 0), Td(i, 1), Td(i, 2), · · ·}
If we can estimateDe(i) andT e

d(i), the expected amount of
data delivered for segmenti is De(i) · T e

d (i). So, the estimated
segment throughput for segmenti is

The(i) =
De(i) · T e

d (i)

Dp(i)
. (1)

Denote {Ts(0), Ts(1), Ts(2), · · ·} the sequence of throughput
samples which is the combined sequence of {TD(0), TD(1),
TD(2), · · ·}. In general,T e

d (i) is a function of throughput sam-
ples:

T e
d(i) = f [Ts(0), Ts(1), Ts(2), · · ·]. (2)

To computeT e
d (i), we apply the concept of running average

T av
s of {Ts(k)|k = 0, 1, 2, 3, · · ·} as follows [3], [15]

T av
s (k) =

{

(1− δ)T av
s (k − 1) + δTs(k), k > 1

Ts(k − 1), k = 1
(3)

whereδ is a weighting value.
Suppose thatTs(Ki−1) is the last throughput sample of seg-

ment(i− 1), the average throughputT av
s (Ki−1) then is used as

the estimated throughput for segmenti:

T e
d(i) = T av

s (Ki−1). (4)

Usually, the higher the value ofδ is, the more the estimated
throughput depends on the recent throughput samples. To have a
smoothed value of throughput, a small value ofδ should be used.
In this paper, we adopt the method in [3] to control the value of
δ, so that the estimated value is stable to short-term fluctuations
while responding quickly to large fluctuations of the networks.

As for De(i), this value is strongly dependent on the request
time instant. For that, we classify the problem into two cases,
non-pipelined and pipelined.

A connection is non-pipelined if a request is sent only after
the previous segment has been fully received. After a request is
sent, it takes about an RTT delay for the client to receive thefirst
byte of the response. So, the expected download duration is as
follows:

De(i) = Dp(i)− RTT e(i) (5)

whereRTT e(i) is the expected RTT of segmenti. RTT e(i)
also is computed as a running average of previous RTT values:

RTT e(i) =

{

(1 − γ)RTT e(i− 2) + γRTT (i− 1), i > 1
RTT (i− 1), i = 1

(6)
whereγ is a weighting value which is similar toδ of (3). Usual
γ takes a small value for a smooth RTT estimation. In this paper,
γ is set to 0.125 as recommended by [29].

The connection is of pipelined type if a request is sent be-
fore having fully received the previous segment. In this case, the
expected download duration is as follows:

De(i) = Dp(i). (7)

The highest possible value of segment bitrateBc(i) is com-
puted from the estimated throughput using a simple safety mar-
gin µ as follows:

Bc(i) = (1− µ)The(i) (8)

whereµ usually takes a small value in the range [0, 0.5].
From (5) and (7), we can see that the use of pipelining can

help increase the download time (about one RTT), leading to the
increase in segment throughput. However, when segment dura-
tion is long (e.g., 6–10 s), the improvement by using pipelining
is insignificant because RTT in today’s networks is just several
tens or hundreds of milliseconds. Moreover, pipelining leads
to a lot of complexity in handling and detecting timing of re-
sponses. So, in this study, we just focus on non-pipelined case.

IV. VIDEO BITRATE ESTIMATION

The previous section provides the estimated throughput
which is used to decide the bitrate of the next segment. If video
is created with constant bitrate, the selection of appropriate al-
ternative would be straightforward. However, when the bitrate is
not constant, there may be two cases. First, the instant video bi-
trate is much lower than the actual throughput, thus resulting in
poor bandwidth usage. Second, the instant video bitrate is higher
than the actual throughput, resulting in transmission delay and
then buffer underflows.

Our objective in this section is that, through bitrate estima-
tion, the client will be able to dynamically select the highest pos-
sible bitrate in both cases. Hereafter, the notationS(i, n) means
the segment of time (or segment) indexi and alternativen; and
B(i, n) means the bitrate of segmentS(i, n).

We suppose that each video alternative now is encoded by a
quantization parameter (QP) value [30]. At time or segment in-
dexi− 1, suppose that the client has already received a segment
S(i − 1, a) and computed the actual bitrateB(i − 1, a) of that
segment. Then, before downloading a segment of time indexi,
the client should estimate bitrates{B(i, n)|1≤n≤N}, where N
is the number of alternatives. For that, the client should estimate
first the bitrates{B(i− 1, n)|1≤n≤N andn 6= a}.

So, in our approach, bitrate estimation is divided into two
parts: 1) Inter-stream estimation and 2) intra-stream estimation.
The former means estimating the bitrates of segments (in the
same interval) across different alternatives, while the latter im-
plies estimating the bitrate of a future segment within an alterna-
tive. The estimation models here are specific for advanced video
coding (AVC) [31], which is the most popular video format and
is used in our streaming system.

A. Inter-Stream Bitrate Estimation

A number of models to represent the relationship between
video bitrate and QP value have been proposed in the literature
(e.g., [26], [27]). In general, the bitrate of a segment is well
related to the bitrate of another segment with the same time in-
dex. If the client has received a segmentS(i− 1, a) with bitrate
B(i− 1, a), we can model the estimated bitrateBe(i− 1, n) of
any segmentS(i− 1, n) as a function ofB(i− 1, a):

Be(i− 1, n) = finter[B(i− 1, a)]. (9)

In AVC, it is well-known that a 6-unit increase of QP would
roughly halve encoded video bitrate [28], [31]. More specifi-
cally, a 1-unit increase of QP means an increase of quantization
step size by approximately 12%, which results in a bitrate re-
duction of about 12% [31]. So, the bitrate ofS(i − 1, n) can be
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Fig. 5. Estimated bitrates across different alternatives.

estimated from the bitrate of the received segmentS(i−1, a) as
follows.

Be(i− 1, n) = θB(i − 1, a)2
Qa−Qn

6 (10)

whereQa andQn are the QP values of the alternatives andθ

is an empirical factor that compensate for the approximation er-
ror of the model. It should be noted that, QP chiefly affects the
amount of bits used to encode video residual data. In a coded
video stream, a nontrivial amount of bits is used to convey other
data such as parameter sets and slice headers [31]. Based on our
experience, a reasonable value ofθ is 1.05.

Fig. 5 shows the estimated bitrate together with the actual bi-
trate of a video clip which is taken from the “Tokyo Olympics”
sequence [30]. The estimated bitrate for a given QP is computed
by (10) withn = a − 1. We can see that the estimation model
provides very good results across different bitrate ranges. In
practice, the client can obtain QP value of each alternativeby
simply downloading and then parsing the initial part of eachal-
ternative, where the parameter sets of video are located. Inaddi-
tion, the QP values can easily be put into MPD using the syntax
extensibility [3].

B. Intra-Stream Bitrate Estimation

In general, the bitrate of segmentS(i, n) is a function of some
previous segment bitrates, i.e.,

Be(i, n) = fintra[B(i−1, n), B(i−2, n), B(i−3, n), · · ·]. (11)

A large number of bitrate estimation methods have been pro-
posed in this area (e.g., [24], [25]). However, most of them re-
quire much knowledge of the content (e.g., shot changes) and/or
high processing power, which are not appropriate for fast esti-
mation in Web-based or lightweight streaming clients.

In practice, a video sequence is usually composed of scenes
where GOPs in each scene would have similar characteris-
tics. That means, adjacent video segments would have simi-
lar bitrates. So, for intra-stream bitrate estimation, theprevious
known instant bitrate of time indexi − 1 could be used as the
estimated bitrateBe(i, n) of the segmenti, i.e.,

Be(i, n) =

{

Be(i − 1, n), n 6= a

B(i − 1, a), n = a.
(12)

Due to its simplicity, which causes nearly no computation
overhead, this simple model is used in our system. However, as

Fig. 6. Test-bed organization for the experiments.

shown in the experiments, the results provided by this solution
are already very effective.

V. EXPERIMENTS

The organization of our test-bed is shown in Fig. 6. The server
is an Apache of version 2.2.21 run on Ubuntu 11.10 (with de-
fault TCP CUBIC). For alive connections, the server’s timeout is
set to 100 s and MaxRequest to 0 (i.e., unlimited). DummyNet
[32] is installed at the client to simulate network characteris-
tics. As random fluctuations of throughput would make it dif-
ficult to compare the results of different experiment runs, the
loss rate of DummyNet is set to 0% for clear results. Here, we
assume that actual bandwidth trace used in the experiments al-
ready contains the fluctuations caused by packet loss. RTT value
of DummyNet is set to 40 ms. The safety marginµ for deciding
video bitrate is set to be 0.05.

In our test-bed, the client is implemented in Java and runs on
a Windows 7 Professional notebook with 2.0 GHz Core2Duo
CPU and 2 G RAM. Video is encoded by the main profile of
AVC [31]. Video component has the frame rate of 30 fps and res-
olution of320× 240. Media segments are created with the same
duration and stored in separate small files. Distance between two
consecutive segment requests normally is the segment duration;
however, if the previous response is delayed, the followingre-
quests will be sent right after fully receiving a response until the
buffer level is stable. The initial buffering delay (and also the
target buffer level) is equal to two segment durations. In the fol-
lowing, we present two experiments, the first is for throughput
estimation, and the second is for bitrate estimation.

A. Experiment of Throughput Estimation

In the first experiment, video is encoded in CBR mode with
10 bitrates, from 2560 kbps to 256 kbps with a step size of 256
kbps. Download throughput samples are taken with a period of
1 s. To show the effectiveness of our method proposed in Sec-
tion III, the aggressive method ([3], [11]) is selected to bethe
reference method. As mentioned before, the aggressive method
is simply based on the last segment throughput and currently
the most responsive to the fast fluctuations of bandwidth. A real
bandwidth trace obtained from a mobile network [33] is em-
ployed in the experiment.

Figs. 7(a) and (b) show the client behavior for two cases of
throughput estimation: 1) Using the aggressive method and 2)
using our proposed method. Each figure has four curves, rep-
resenting the bandwidth (controlled by DummyNet), estimated
throughput, selected bitrate, and the resulting buffer level. In
these figures, the segment duration is 6 s and the target buffer
level is 12 s (2 × 6 s). It can be seen that, with the aggres-
sive method, the buffer level may be reduced by about 11.5
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(a)

(b)

Fig. 7. Client behavior with segment duration of 6 s and throughput
estimation using: (a) Aggressive method and (b) proposed method.

Fig. 8. Comparison of the aggressive method and proposed method
with segment duration of 6 s using: (a) CDF of bitrate and (b) CDF of
buffer level.

s. Meanwhile, with our proposed method, the buffer is reduced
by only 6 s. The comparison using cumulative distribution func-
tions (CDFs) of bitrate and buffer level (Fig. 8) provides more
insights into the client’s overall behavior. The CDFs of bitrate
show that the bitrates of the two methods are very similar. Mean-
while, the CDFs of buffer level show that the buffer level of the
aggressive method varies widely from 12 s to 0.5 s. Especially,
the buffer level of the proposed method stays mostly in the range
10 s–12 s and sometimes goes down to 6 s. That means, the ac-
curacy of our throughput estimation method can enable a more
stable buffer level, thus helping reduce the initial buffering de-
lay.

(a)

(b)

Fig. 9. Client behavior with segment duration of 8 s and throughput
estimation using: (a) Aggressive method and (b) proposed method.

When segment duration is 8 s, the similar behaviors are shown
in Figs. 9(a) and (b). Now the target buffer level is 16 s (2 × 8
s). We can see that, with our proposed method, the variations
of buffer level are still within 5 s. Meanwhile, with aggressive
method, the reduction of buffer level is up to 14 s. The corresp-
onding CDFs of bitrate and buffer level (Fig. 10) also show the
results similar to those of Fig. 8. Especially, in terms of buffer
level, the improvement of the proposed method compared to
the aggressive method is up to 9 s in Fig. 10(b) and 5.5 s in
Fig. 8(b). This implies that when segment duration is longer, the
responsiveness of the aggressive method would be worse. This
can be explained by the fact that the aggressive method uses a
throughput measure averaged over the whole segment duration.
Meanwhile the use of throughput samples enables the client to
track the fast fluctuations regardless of segment duration.

B. Experiment of Bitrate Estimation

In the second experiment, we prepare the video alternatives
in VBR mode. Test video, which is taken from the “Tokyo
Olympics” sequence [30], consists of 125 segments. The du-
ration of each segment is set to 2 s to clearly represent the vari-
ations of instant video bitrate. Similar to [30], video alternatives
are encoded with 7 different values of QPs, namely 22, 24, 28,
34, 38, 42, and 48. These alternatives are respectively denoted
by #7, #6,· · ·, #1. Fig. 11 shows the segment bitrates of each
alternative. We can see that the bitrate varies widely. The aver-
age bitrate and the highest bitrate of each alternative are listed
in Table 1.
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Fig. 10. Comparison of the aggressive method and the proposed
method with segment duration of 8 s using: (a) CDF of bitrate and
(b) CDF of buffer level.

Table 1. The average bitrate and highest bitrate of alternatives used in

the second experiment.

Alternative Average bitrate (kbps) Highest bitrate (kbps)
#7 1320.2 2526.3
#6 1015.1 1966.7
#5 616.7 1215.7
#4 288.8 567.8
#3 173.4 329.3
#2 104.2 189.4
#1 45.4 92.7

Fig. 11. Segment bitrate of diffirent alternatives of test video.

In order to clearly explain the client behavior, we first run
the experiment with flat bandwidth. Initially, suppose thatthe
average bitrate of each alternative is used as its representative
bitrate. If the bandwidth is 1150 kbps (resulting in a through-
put of about 1090 kbps), alternative #6 (with average bitrate of
1015.1 kbps) will be selected. However, due to the variations of
segment bitrate, playing this alternative makes the bufferlevel
gradually reduced from 8 s to 2 s as shown in Fig. 12. In this
case, the initial buffering must be more than 6 s (i.e., 8 s – 2
s) to support a continuous playout. Obviously, it is difficult to
determine in advance the necessary amount of initial buffering
when average bitrate is used. This is the reason that averagebi-
trate of a VBR video stream usually is not used as the stream’s
representative bitrate.

Now let’s use the highest bitrate of each alternative as its rep-
resentative bitrate, which is the choice of existing HTTP stream-

Fig. 12. Client behavior using the average segment bitrate.

Fig. 13. Client behavior when the representative bitrate of an alternative
is its highest segment bitrate.

ing standards as discussed in Section II. The available band-
width and throughput are kept as before, which are lower than
the highest bitrate of alternative #5. So, with this case, the se-
lected alternative will be #4 as shown in Fig. 13. The buffer level
is obviously very stable; however, the connection bandwidth is
significantly underused in this case. Especially, if the highest bi-
trate is much higher than the usual values of segment bitrates,
the actual bandwidth usage will be very low.

If the client has the (instant) bitrate estimation capability as
presented in Section IV, it can intelligently switch between al-
ternatives #5, #6 and #7 depending on the estimated segment
bitrates. As shown in Fig. 14, the client now can achieve much
higher bitrate while the buffer is still stable. Note that, with this
stable buffer level, the initial buffering could be reducedfrom
two segment durations (4 s) to only one segment duration (2 s),
which will significantly improve the quality of experience for
users. Fig. 15 compares the CDFs of bitrate and buffer level in
these three cases: 1) Using the average bitrate (ABR), 2) us-
ing the highest bitrate (HBR), and 3) using the estimated bitrate
(EBR). This figure reconfirms that the case using EBR provides
a good bitrate (close to the case using ABR) and stable buffer
level (close to the case using HBR).

The bandwidth trace of the previous part is now employed
to see how bitrate estimation helps the client in practical set-
tings. Fig. 16 compares the bitrate and buffer level of two cases:
1) Using HBR and 2) using EBR. The case of ABR is not in-
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Fig. 14. Client behavior when bitrate estimation is enabled.

(a) (b)

Fig. 15. When the adaptation is based on the average birate (ABR), the
highest bitrate (HBR), or estimated birate (EBR): (a) CDF of bitrate
and (b) CDF of buffer level.

cluded here because it is not usually used in practice. Also,the
throughput curves are not shown for the sake of clarity. We can
see that when the adaptation is based on EBR, the resulting bi-
trate curve is significantly higher than the case of HBR. The
CDFs of bitrate in Fig. 17(a) show that the advantage of using
EBR exists in the whole range of birate. Meanwhile, the buffer
level of the case using EBR is stable and nearly the same as that
of the case using HBR (Figs. 16 and 17(b)).

C. Discussion

The results in the first experiment show that our proposed
method can capture quickly the changes of throughput, and then
adjust video bitrate accordingly. In other tests with shortseg-
ment duration (e.g., 2 s or 4 s), the improvement in buffer stabil-
ity of our proposed method compared to the aggressive method
is not significant (about 1 s). This is because the number of
throughput samples in short segment case is not as many as that
in long segment case.

In the second experiment, an interesting finding is that, even
using the simple intra-stream bitrate estimation, which isusing
the last segment bitrate, we can significantly improve the quality.
Sometimes the actual bitrate is higher than the throughput (as in
Figs. 14 and 16); however, the errors are not big and the client
still maintains a good buffer with very small variations. This
suggests that it may be unnecessary to employ more complicated
methods for intra-stream bitrate estimation.

It should be noted that, when a video is encoded in CBR

Fig. 16. Comparison of the client behavior when the adaptation is based
on the highest bitrate (HBR) or the estimated birate (EBR).

(a) (b)

Fig. 17. When the adaptation is based on the highest bitrate (HBR) or
estimated birate (EBR): (a)CDF of bitrate and (b) CDF of buffer level.

mode, the visual quality would be changed in a similar way to
switching alternatives. If the number of alternatives is higher, the
switching will be smoother. So, in some sense, bitrate estima-
tion facilitates a kind ofclient-enabled CBR streaming, where
the video sources are in fact encoded in VBR mode. The advan-
tage of this client-enabled CBR streaming is that when band-
width is abundant, the client may turn off bitrate estimation and
then run in VBR mode. Meanwhile, when bandwidth is low, the
client will apply bitrate estimation and then achieve (near) CBR
streaming with VBR video sources. Of course, even in case of
low bandwidth, the client can still decide to use VBR mode if
preferred.

The complexity of our throughput and bitrate estimation
methods is very low because they are just based on analytical
formulations. From our experience, the decision delay of our
method, which is from the instant of receiving the last byte of
a segment to the instant of obtaining the selected bitrate for the
next segment, is very small (less than 1 ms). That means the es-
timation methods essentially do not affect the playback quality.

VI. CONCLUSION

In this paper, we have studied the estimation of connection
throughput and video bitrate in adaptive HTTP streaming. A
general formulation for throughput estimation was proposed,
taking into account important factors such as instant down-
load throughput and RTT. Initial mechanisms for bitrate estima-
tion of VBR video were also presented. The experiment results
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showed that the proposed solutions were effective to maintain
a stable buffer under fluctuations of bandwidth and video bi-
trate. Our goal in the future is to improve the throughput estima-
tion process so that the client can quickly recognize the different
throughput patterns of different networks and then automatically
adjust the estimation. Also, intra-stream bitrate estimation will
be improved by using some simple content features such as mo-
tion activity.
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