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Adaptive Video Streaming over HTTP with Dynamic
Resource Estimation

Truong Cong Thang, Hung T. Le, Hoc X. Nguyen, Anh T. Pham, Jiog Kang, and Yong Man Ro

Abstract: Adaptive hypertext transfer protocol (HTTP) streaming
has become a new trend to support adaptivity in video deliver. An
HTTP streaming client needs to estimate exactly resource ailabil-
ity and resource demand. In this paper, we focus on the most ipor-
tant resource which is bandwidth. A new and general formulaton
for throughput estimation is presented taking into accountprevi-
ous values of instant throughput and round trip time. Besides, we
introduce for the first time the use of bitrate estimation in HTTP
streaming. The experiments show that our approach can effeéiwely
cope with drastic changes in connection throughput and vide bi-
trate.

Index Terms. Adaptivity, bitrate estimation, HTTP streaming,
throughput estimation.

I. INTRODUCTION

In video streaming, if the actual throughput is lower thaa th
estimated throughput or similarly if the actual video Witrés
higher than the specified bitrate, video data transmissittvev
delayed and the decoding buffer will quickly become empty. T
cope with errors in both estimated throughput and specified
video bitrate, a client should buffer some amount of videada
before it can start playing [3], [9]. Obviously, if the amduoi
buffered data is large, the client can better cope with theréu
mismatches. However, this action results in the so-caiiehl
buffering delay (sometimes up to tens of seconds), which badly
affects the quality of experience, especially for live aiméng
[9]. So, the accuracy of throughput and video bitrate infarm
tion will be crucial to maintain a low and stable buffer letfed
a streaming client. To this end, the main contributions @ th
paper are as follows.

First, we propose a new and general formulation for through-
put estimation taking into account previous values of inista

Thanks to the abundance of web platforms and broadbafgbughput and round trip time (RTT). Currently, throughpu

connections, hypertext transfer protocol (HTTP) streantias

estimation is based on the previous segment throughputs [3]

become a cost effective means for multimedia delivery [1}40], [11], which are average values that may not capturéstste
[3]. Besides, due to the heterogeneity of today’s communidgandwidth fluctuations when the segment duration is long- Se

tion networks, adaptivity is the most important requiretrfen
any streaming client [3]. Especially, transmission colnpro-

ond, we introduce for the first time the use of bitrate estima-
tion in HTTP streaming. With bitrate estimation, the clieril

tocol (TCP), the underlying layer of HTTP, is notorious ft& i be able to dynamically select the highest possible bitrasaa

throughput fluctuations [4]. Moreover, the bitrate of a \ddmn-

time. So far, previous studies have dealt with constanataitr

coded in variable bitrate (VBR) mode may also vary widely a¢EBR) video only. To the best of our knowledge, our previous
cording to the characteristics of the content [5]. So, the-mistandard contribution [12] is the first work that has hightig
match of both throughput and video bitrate is a big challéngethe importance of instant bitrate information in HTTP strea

video streaming.

ing. As shown later, it is interesting that this solution meay

For adaptivity to networks and terminal capabilities, anl#T able CBR-streaming even though the video is encoded in VBR

streaming provider should generate multiple alternatieeser-
sions) of an original video as well as the signaling metatteta
contains the characteristics of the alternatives (suchteetdy

mode.
The paper is organized as follows. In Section II, we first pro-
vide an overview of adaptive HTTP streaming, bitrate cotcep

resolution, etc.) [6]. Based on the metadata and statusrof tgnd related work. A systematic method to estimate the throug
minal/networks, the client makes decisions on which/when mput is proposed in Section Ill. In Section 1V, we present the

dia parts are downloaded. This client-based approach @afunmechanisms for the client to estimate the instant bitrate fo

mentally different from the conventional server-basedapph
(e.g., [7]), where the server plays a decisive role in stiagnin

VBR video content. Experiments with different scenarios ar
presented in Section V. Finally, conclusions and futurekvese

order to make good decisions, the client needs to estimate afiven in Section VI.

rectly 1) resource availability and 2) resource demandshim

paper, we focus on the most important resource type, which is

bandwidth/bitrate.
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Il. OVERVIEW OF ADAPTIVE HTTP STREAMING
A. HTTP Streaming and Bitrate Adaptation

As discussed in [3], [13], the general architecture of adap-
tive HTTP streaming consists of servers, delivery netwgaaiksl
clients. Video versions together with their metadata argtdt
at some servers and will be requested by the client. Based on
the metadata and status of terminal/networks, the deceien
gine at the client makes decisions on which/when media parts
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Fig. 1. Hierarchy of content division in MPEG DASH.

Fig. 2. lllustration of bitrate B with initial delay dg.

B. Bitrate Concept
are downloaded.

Recently, a new standard called dynamic adaptive streaming hough bitrate is one of the most important concepts in video
over HTTP (DASH) has been developed by international dfansport, its definition is actually not simple. The defontof
ganization for standardization (ISO)/international &leechni- bitrate depends on two basic factors, namely initial delay a
cal commission (|EC) moving picture experts group (MpEgp,Iay time instant [16]—[18] Note that this initial delaysipecific
specifying the metadata and media formats exchanged betwisethe context of bitrate definition; it is different from tiretial
clients and servers [14]. In MPEG DASH's terminology, th&uffering delay which is used to cope with the fluctuations of
metadata is callednedia presentation description (MPD). A connection throughput.
long content item could be divided into one or more tempo- Fig. 2 shows a playout curve (piece-wise curve) of a video
ral chapter (callegeriod). Alternatives (calledepresentations)  stream, which represents the accumulative played datavitize
having some common characteristics (e.g., same content coaspect to time. This playout curve consists of four intkrva
ponent) are grouped into @daptation set. Further, each repre-{(¢;,t;+1)|0 < ¢ < 3} corresponding to four segments of the
sentation could be divided into mediegments. An illustration video. The slope of the curve in each interval is the average
of media division hierarchy is shown in Fig. 1. More informabitrate of the corresponding media segment. Suppose that, a
tion about the structure and basic concepts of DASH could tiee ¢4, the client starts receiving video data at a ratethen
found in [2], [13]. the client starts playing the video data at time The value

Media will be delivered by a sequence of HTTP requesty = to — tq is called initial delay, which is the duration the
response transactions. In most cases, for each requestifeonclient must wait before consuming the data. Given an inie!
client, the server will send one segment. The term “initigfdér- lay do, the bitrate of the whole video stream is the minimum
ing” in this paper means the length (in seconds) of mediaededlope B of a tangent line that starts from poif#,, 0) and is
in the buffer before the playout can start. never lower than the playout curve at any time instant.

HTTP streaming can be applied to both on-demand streamingbviously, the larger the initial delay is, the lower the bi-
and live streaming. The main difference between these teescatrate B becomes. However, this pair of bitrate-delay is just valid
is the available time of segments. In live streaming, thetilis- when the video is played continuously from the beginning to
tance between the requests of two consecutive segments isthp end. If the user wants to play from (through random ac-
proximately the duration of the first segment. So, if segmendess/seeking), the initial delay mustdieto maintain the same
have the same duration efseconds, the distance between reralue of bitrate B. If initial delay dy (dy < do) should be
quests will ber as well. Meanwhile, in on-demand streamingnaintained, the defined bitrate at this point must be higen t
requests could be sped up to quickly fill the buffer [15]. Not®. So, the value of bitrate is highly dependent on the targeted
that in live streaming, the playback takes place with a stieft play time instant (or random access point).
lay (typically less that 10 s), so the client should maingasmall | the standardization process of DASH, the relationship of
buffer. different initial delays and corresponding bitrates hasnbeis-

As we focus on the difficult problem of maintaining a low an@ussed in [18], and the notion of instant bitrate (or segrbéent
stable buffer level, the initial buffering is also the targeffer trate) was first presented in [12]. After several rounds gf-re
level to be kept during a session. sion, the bitrate is finally derived by using the same initialay

In general, the process of bitrate adaptation takes intouadc for any random access point [14]. That means, ithis high-

1) the estimated throughput and 2) the bitrates of alteresiti est value of instant bitrates given a fixed initial delay. In DASH
which are specified in the metadata (MPD). For each segmephtax, the initial delay and bitrate are represented bipates
interval, the bitrate can be decided as the highest valubeof {@minBuffer Time and @bandwidth respectively.

alternatives’ specified bitrates that is smaller than thieneged In IETF Internet-Draft “HTTP Live Streaming”, the definitio

throughput. Further, if the client has the ability to estiena- ot pjtrate also specifies that video bitrate is the highegtrsmt
stant bitrates of alternatives, the estimated bitratesbeiused pitrate of all segments of an alternative [19]. Becauséainite-

instead of specified bitrates. Throughput estimation atrdti |,y js not specified in the bitrate definition of [19], a segen
estimation will be tackled respectively in Sections Il dkd bitrate can be understood as the average segment bitrdte wit
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initial delay equal to 0. With this definition, the slope ofjsgent Feature | ) oller
(t2,t3), which is higher than the slopes of other segments, is the extraction j
very representative bitrate of the above stream. For saityli

in the following, segment bitrate means the average bitate p| Throughput )

segment. Sequence of segment estimation Estimated
So, in existing HTTP streaming standards, the highest seg- throughputs throughput

ment bitrate of an alternative is used as the representaiive

trate of the alternative. This is obviously due to safetysoen Fig. 3. Proposed framework of throughput estimation.

in adaptive streaming. However, for VBR video, this defomiti

may result in a very poor bandwidth usage as shown later #n
Sections IV and V. £
= 17777 A N

C. Related Work = iR T

Some recent work provides good reviews of HTTP streaming i ! ! T 4 f-'
which mostly aims at delivering multimedia via the Web [1], Request Time axis Next request
[2]. As for DASH, overviews and basic ideas behind the devel- time time
opment of the standard are highlighted in [2], [13]. A dedil _ _
analysis on the use of DASH for live service is presentedjn [9 Fig. 4. lllustration of download throughput samples.

where an initial buffering of about 2 segment durations ig-su
gested. Detailed investigations of adaptivity in some caruial

clients are carried outin [15], [20], providing some instighnto The general framework of our method is shown in Fig. 3.

the behaviors of the clients. Here, feature extraction block provides one or more thrpugh
In [10], the measure of segment fetch time is used to de- b pug

termine requested video bitrates in an aggressive dec erelated parameters of the previous segments. Based onahe fe

step-wise increase manner (like TCP congestion contrlif :1[1:)edse,ltizetr?gTrt:r(())llljeg;hb;a(t:l;s\f'\clilrl:]gﬁgl:EI:)OcEdJUSt the conatian

f usi TCP-lik hani liabl i ; : ) .
stead of using a TCP-like mechanism, a reliable estimatfon ¢ Using this framework, in [3], we presented a throughput esti

throughput for city commuters using the prior-knowledge Or% tion method that is based on previ ment throuahout
commuting routes (e.g., metro/bus tracks) is used to daterm ation method that IS based on previous segme oughputs

video bitrate [21]. In [11], a Java client for HTTP streamin he segment throughput is computed by dividing the segment

on Android platform is developed and different algorithnss u ?tatS'?e byéhe r::‘k?uest-res?(:nstﬁ dgrazlor;, V\flh'Ch IS .frerggg |
ing different throughput estimation ways are compared3|n [S ant ol sending the request to the instant of receving

L byte of the response.
we presented a novel approach for throughput estimatioichwh . . .
is stable to short-term fluctuations while responding gyitdx As discussed in [3], [11], the aggressive method, where the

large fluctuations of the networks. Also, it is experimelytal last segmentt_hroughputls simply l.Jsed as the estimatedghro
shown that an initial buffering delay of two segment durasio put, currently is the most responsive method to capture yhe d

I hi 1IN 1221 1231 the i N y namic changes of throughput. However, when the segment du-
could be achieved [3]. In [22], [23], the issues of stabitityd ration is long (e.g., 8-10 s as in [19]), that method may not be

is due to the very choice of delivery interval.

fairness when there are multiple clients or cross-traffeciar ttactive to track the fast fluctuati fih "
vestigated. To improve the stability, a special point of][83he efiective to track the fast fiuctuations ot the connection.

use of a randomized scheduler for requesting media segments T|Of copel with bth's dprobll‘zm, \:ve dprﬁsentha new anﬂd;gen-
Bitrate estimation has long been an interesting reseapib toSra! formulation based on “download throughput” samples an

[24]-[27]. For network traffic control, if the output videad-b RTT. Download throughput is computed by dividing the seg-

trate from a live source is estimated to be higher than conn&ent data size by the download duration, which is from the in-

tion throughput, some bitrate scaling operation should fipe gant O.f _receiving the first byte of the response to the instan
plied to avoid potential congestion [28]. Besides, a cdresti- of receiving the last byte of the response. A download thineug

mate of video bitrate would help providers to efficiently raga PUt Sample is an instant download throughput, computedaver

network resources [17]. Yet, there have been no studiesen lﬁf?(t’rt !{nte(rjval (?'ga %hS) duungtdownlzlaadmg aszgment.@;;d
use of bitrate estimation for HTTP streaming. To the bestnf o ustrates download throughput samples (upward arrows)

knowledge, [12] is the first work that discusses the impcmanre"”‘t(ad conce.pts.. . , .
of instant bitrate in HTTP streaming. Before delving into the details, let’s have the followingao

tions:
— D, (i): The presentation duration of segment
. THROUGHPUT ESTIMATION — D¢(i): The expected download duration for segment

As mentioned, media segments are delivered by a sequence of; (i): The estimated download throughput for segment
HTTP request-response transactions. In this section, siégu — R7T'T(i): The duration between the instant of sending the re-
cus on the sequence of received segments, without congideri quest for segmentand the instant of receiving the first byte
their alternative indexes. The throughputin general isidated of the corresponding response.
by dividing the amount of data (data size) by the delivergiint — T;(i, j): The jth sample of download throughput of segment
val. In fact, the difference between various throughputricet 4.
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— TD(z): The sequence of (download) throughput samples wherey usually takes a small value in the range [0, 0.5].
segment, i.e., TD(i) = {T4(i,0), Tu(i, 1), Ty(i,2), - -} From (5) and (7), we can see that the use of pipelining can
If we can estimateD*(:) and7;(i), the expected amount of help increase the download time (about one RTT), leadinigeto t

data delivered for segments D¢ (i) - T5(4). So, the estimated increase in segment throughput. However, when segment dura

segment throughput for segmeris tion is long (e.g., 6-10 s), the improvement by using pipetn
De(i) - TS (4) is insignificant because RTT in today’'s networks is just save
The(i) = ——2—4>2 (1) tens or hundreds of milliseconds. Moreover, pipeliningdkea
Dy(i) to a lot of complexity in handling and detecting timing of re-

Denote {I,(0), T,(1), Ts(2), - - -} the sequence of throughputsponses. So, in this study, we just focus on non-pipelingé.ca
samples which is the combined sequence DD{0), TD(1),
TD(2), - - -}. In general, T3 (7) is a function of throughput sam-

ples: IV. VIDEO BITRATE ESTIMATION

TS(i) = f[Ts(0), Ts(1), T(2), - - . (2) The previous section provides the estimated throughput

To computeT (i), we apply the concept of running averagc.\éthCh is used to decide the bitrate of the next segment. Bwid

av d’ o is created with constant bitrate, the selection of apped@ral-
T oH{T:(k)[k = 0,1,2,3, -} as follows [3], [15] ternative would be straightforward. However, when thedbétiis

TaV(k) — (1 =0Tk —1)+0Ts(k), k>1 3 not constant, there may be two cases. First, the instanb \dde
s (k) = Ts(k —1), k=1 () trate is much lower than the actual throughput, thus resulti
poor bandwidth usage. Second, the instant video bitrafglieh

whered is a weighting value. than the actual throughput, resulting in transmissionydafad
Suppose thal’s(K;-1) is the last throughput sample of Sedthan buffer underflows.

ment(i — 1), the average throughp@®'(K;_;) then is used as

i X Our objective in this section is that, through bitrate estim
the estimated throughput for segment

tion, the client will be able to dynamically select the higheos-
TS(i) = T(K;_1). (4) sible bitrate in bqth cases. Hereaftgr, the notafion @) means
the segment of time (or segment) indexnd alternatives; and

Usually, the higher the value dfis, the more the estimated 3(;, ) means the bitrate of segmesiti, n).
throughput depends on the recent throughput samples. Behav \We suppose that each video alternative now is encoded by a
smoothed value of throughput, a small valué should be used. gquantization parameter (QP) value [30]. At time or segment i
In this paper, we adopt the method in [3] to control the valtie gex; — 1, suppose that the client has already received a segment
9, so that the estimated value is stable to short-term fluctust 5(; — 1,4) and computed the actual bitraBi — 1, ) of that
while responding quickly to large fluctuations of the netvsor  segment. Then, before downloading a segment of time index

As for D¢(i), this value is strongly dependent on the requege client should estimate bitraté (i, n)|1<n<N}, where N
time instant. For that, we classify the problem into two sases the number of alternatives. For that, the client shoulitrege
non-pipelined and pipelined. first the bitrate B(i — 1, n)|1<n<N andn # a}.

A connection is non-pipelined if a request is sent only after o, in our approach, bitrate estimation is divided into two
the previous segment has been fully received. After a redsiesparts: 1) Inter-stream estimation and 2) intra-streanmeston.
sent, it takes about an RTT delay for the client to receivditte The former means estimating the bitrates of segments (in the
byte of the response. So, the expected download durati® issame interval) across different alternatives, while thietam-
follows: plies estimating the bitrate of a future segment within &erah-

De(i) = Dy(i) — RTT*(i) (5) tive. The estimation models here are specific for advanakebvi
where RT'T*(i) is the expected RTT of segment RTT*(i) coding (AVC) [31], which is the most popular video format and
also is computed as a running average of previous RTT valud§:used in our streaming system.

(1=9)RTT(i —2)+~yRTT(i—1), i>1 A. Inter-Stream Bitrate Estimation

RTT"(i) = {RTT(i —1) i=1 i
) A number of models to represent the relationship between

(6) * Video bitrate and QP value have b d in the literat
where~ is a weighting value which is similar #®of (3). Usual gl eo bitrate and QP value have been proposed in the [iteratu

i . e.g., [26], [27]). In general, the bitrate of a segment idlwe
v takes a small value for a smooth RTT estimation. In this papgL|ateq 1o the bitrate of another segment with the same time i

vis setto 0.125 as_recom_me_nded by [2.9]' . dex. If the client has received a segm#giit — 1, a) with bitrate
The connection is of pipelined type if a request is sent bes, .

. . . . %(z —1,a), we can model the estimated bitrd®&(i — 1, n) of
fore having fully received the previous segment. In thiecése any segmens§ (i — 1,n) as a function oB(i — 1, a):
expected download duration is as follows: ’ e

D(i) = D, (i). 7 B®(i —1,n) = finer|B(i — 1,a)]. 9
In AVC, it is well-known that a 6-unit increase of QP would
g)ughly halve encoded video bitrate [28], [31]. More specifi
cally, a 1-unit increase of QP means an increase of quaiatizat
step size by approximately 12%, which results in a bitrate re

Be(i) = (1 — p)The(i) (8) duction of about 12% [31]. So, the bitrate $f; — 1, ) can be

The highest possible value of segment bitrBfé:) is com-
puted from the estimated throughput using a simple safety m
gin . as follows:
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shown in the experiments, the results provided by this goiut
are already very effective.

Segment index

V. EXPERIMENTS

The organization of our test-bed is shown in Fig. 6. The gerve
is an Apache of version 2.2.21 run on Ubuntu 11.10 (with de-
fault TCP CUBIC). For alive connections, the server’s timige
set to 100 s and MaxRequest to O (i.e., unlimited). DummyNet
o/ . [32] is installed at the client to simulate network charaste

B*(i=1,n) =0B(i - 1,a)2 (10) tics. As random fluctuations of throughput would make it dif-
where@, and@,, are the QP values of the alternatives #hd ficult to compare the results of different experiment rume t
is an empirical factor that compensate for the approximegie |oss rate of DummyNet is set to 0% for clear results. Here, we
ror of the model. It should be noted that, QP chiefly affecés ttyssume that actual bandwidth trace used in the experiments a
amount of bits used to encode video residual data. In a codegdy contains the fluctuations caused by packet loss. RIUE va
video stream, a nontrivial amount of bits is used to convegot of DummyNet is set to 40 ms. The safety margifor deciding
data such as parameter sets and slice headers [31]. Basad oRigdeo bitrate is set to be 0.05.
experience, a reasonable valug/a$ 1.05. In our test-bed, the client is implemented in Java and runs on

Fig. 5 shows the estimated bitrate together with the actsal B Windows 7 Professional notebook with 2.0 GHz Core2Duo
trate of a video clip which is taken from the “Tokyo Olympics’cPU and 2 G RAM. Video is encoded by the main profile of
sequence [30]. The estimated bitrate for a given QP is coeabupnyC [31]. Video component has the frame rate of 30 fps and res-
by (10) withn = a — 1. We can see that the estimation mode&jlution of320 x 240. Media segments are created with the same
provides very good results across different bitrate ranges duration and stored in separate small files. Distance bettves
practice, the client can obtain QP value of each alterndtjve consecutive segment requests normally is the segmentaturat
simply downloading and then parsing the initial part of eakh however, if the previous response is delayed, the followig
ternative, where the parameter sets of video are locatedidn  quests will be sent right after fully receiving a responst time
tion, the QP values can easily be putinto MPD using the syntgifer level is stable. The initial buffering delay (andalhe
extensibility [3]. target buffer level) is equal to two segment durations. &nfdh-
lowing, we present two experiments, the first is for throughp
estimation, and the second is for bitrate estimation.

In general, the bitrate of segme#ti, n) is a function of some
previous segment bitrates, i.e., A. Experiment of Throughput Estimation

Fig. 5. Estimated bitrates across different alternatives.

estimated from the bitrate of the received segnt&int- 1, a) as
follows.

Qa—Qn
6

B. Intra-Stream Bitrate Estimation

B°(i,n) = firgalB(i—1,n), B(i—2,n), B(i—3,n),---]. (11) In_the first experiment, video is encode(_j in CBR m_ode with
10 bitrates, from 2560 kbps to 256 kbps with a step size of 256
A large number of bitrate estimation methods have been pibps. Download throughput samples are taken with a period of
posed in this area (e.g., [24], [25]). However, most of them r1 s. To show the effectiveness of our method proposed in Sec-
quire much knowledge of the content (e.g., shot changegpandion 111, the aggressive method ([3], [11]) is selected tothe
high processing power, which are not appropriate for fatst egeference method. As mentioned before, the aggressiveosheth
mation in Web-based or lightweight streaming clients. is simply based on the last segment throughput and currently
In practice, a video sequence is usually composed of scefis most responsive to the fast fluctuations of bandwidtlea r
where GOPs in each scene would have similar charactetigndwidth trace obtained from a mobile network [33] is em-
tics. That means, adjacent video segments would have siloyed in the experiment.
lar bitrates. So, for intra-stream bitrate estimation,gh&vious  Figs. 7(a) and (b) show the client behavior for two cases of
known instant bitrate of time index— 1 could be used as thethroughput estimation: 1) Using the aggressive method and 2

estimated bitratés© (i, n) of the segment, i.e., using our proposed method. Each figure has four curves, rep-
Be(i — 1,n) n#a resenting the bandwidth (controlled by DummyNet), estedat
Be(i,n) = { Bli—1 ’a) ’ neaq (12) throughput, selected bitrate, and the resulting buffeelleln

these figures, the segment duration is 6 s and the target buffe
Due to its simplicity, which causes nearly no computatioevel is 12 s £ x 6 s). It can be seen that, with the aggres-
overhead, this simple model is used in our system. Howeser,sive method, the buffer level may be reduced by about 11.5
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estimation using: (a) Aggressive method and (b) proposed method.

When segment durationis 8 s, the similar behaviors are shown
in Figs. 9(a) and (b). Now the target buffer level is 1@sx(8
s). We can see that, with our proposed method, the variations
of buffer level are still within 5 s. Meanwhile, with aggress
method, the reduction of buffer level is up to 14 s. The cqrres
onding CDFs of bitrate and buffer level (Fig. 10) also show th
results similar to those of Fig. 8. Especially, in terms offéu
level, the improvement of the proposed method compared to
the aggressive method is up to 9 s in Fig. 10(b) and 5.5 s in

0 1000 2000 3000 (o) 2 4 6 8 10 12
Bitrate (kbps) Buffer level (s) Fig. 8(b). This implies that when segment duration is lontier
€)) (b) responsiveness of the aggressive method would be worsg. Thi
can be explained by the fact that the aggressive method uses a
Fig. 8. Comparison of the aggressive method and proposed method throughput measure averaged over the whole segment duratio

with segment duration of 6 s using: (a) CDF of bitrate and (b) CDF of

buffer level.

s. Meanwhile, with our proposed method, the buffer is reduc
by only 6 s. The comparison using cumulative distributiomcfu

Meanwhile the use of throughput samples enables the client t
track the fast fluctuations regardless of segment duration.

g. Experiment of Bitrate Estimation

In the second experiment, we prepare the video alternatives

tions (CDFs) of bitrate and buffer level (Fig. 8) providesmmo in VBR mode. Test video, which is taken from the “Tokyo

insights into the client’s overall behavior. The CDFs ofr&ieé Olympics” sequence [30], consists of 125 segments. The du-
show that the bitrates of the two methods are very similaah4e ration of each segment is set to 2 s to clearly represent ttie va
while, the CDFs of buffer level show that the buffer levelloét ations of instant video bitrate. Similar to [30], video altatives
aggressive method varies widely from 12 s to 0.5 s. Espgciathire encoded with 7 different values of QPs, namely 22, 24, 28,
the buffer level of the proposed method stays mostly inthgea 34, 38, 42, and 48. These alternatives are respectivelyteéno
10 s—12 s and sometimes goes down to 6 s. That means, thebgc#7, #6,- -, #1. Fig. 11 shows the segment bitrates of each
curacy of our throughput estimation method can enable a maiteernative. We can see that the bitrate varies widely. Mee-a
stable buffer level, thus helping reduce the initial bufigrde- age bitrate and the highest bitrate of each alternativeiste=l|

lay. in Table 1.
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N

Fig. 10. Comparison of the aggressive method and the proposed
method with segment duration of 8 s using: (a) CDF of bitrate and Fi
(b) CDF of buffer level.

Q

. 12. Client behavior using the average segment bitrate.

Table 1. The average bitrate and highest bitrate of alternatives used in

the second experiment. 4000 - = Bandwidth ——Bitrate 12
0 - - - D00 Est. Throughput Buffer level 10
Alternative | Average bitrate (kbps) Highest bitrate (kbps 3000 8
#7 1320.2 2526.3 Z 5500 6 =
#6 1015.1 1966.7 g o . B
#5 616.7 1215.7 £ ., , &
= =
#4 288.8 567.8 T P e g B
#3 173.4 329.3 T - .
) 104.2 189.4 200 LIS e B, po|
#1 45.4 92.7 ° ‘ “
0 50 100 150 200 250
Time (s)
4000
-~— QP=22 ——QP=24 ——QP=28 ) ) ] ) ) ]
2300 Y (P e i Fig. 13. Client behavior when the representative bitrate of an alternative
3000 — peas is its highest segment bitrate.

2500
2000
ing standards as discussed in Section Il. The available-band
width and throughput are kept as before, which are lower than
the highest bitrate of alternative #5. So, with this case,d#
lected alternative will be #4 as shown in Fig. 13. The bufeel

is obviously very stable; however, the connection bandwisit
Segmentindex significantly underused in this case. Especially, if thenbigf bi-

trate is much higher than the usual values of segment kitrate
the actual bandwidth usage will be very low.

If the client has the (instant) bitrate estimation capapbiis
presented in Section 1V, it can intelligently switch betwes-

In order to clearly explain the client behavior, we first ruternatives #5, #6 and #7 depending on the estimated segment
the experiment with flat bandwidth. Initially, suppose ttia bitrates. As shown in Fig. 14, the client now can achieve much
average bitrate of each alternative is used as its repasent higher bitrate while the buffer is still stable. Note thattwthis
bitrate. If the bandwidth is 1150 kbps (resulting in a thrioug Stable buffer level, the initial buffering could be redudeaim
put of about 1090 kbps), alternative #6 (with average lwtcdt two segment durations (4 s) to only one segment duration (2 s)
1015.1 kbps) will be selected. However, due to the variatisin Which will significantly improve the quality of experiencerf
segment bitrate, playing this alternative makes the buéieel users. Fig. 15 compares the CDFs of bitrate and buffer level i
gradually reduced from 8 s to 2 s as shown in Fig. 12. In thigese three cases: 1) Using the average bitrate (ABR), 2) us-
case, the initial buffering must be more than 6 s (i.e., 8 s —ir)g the highest bitrate (HBR), and 3) using the estimaterteit
s) to support a continuous playout. Obviously, it is diffiid  (EBR). This figure reconfirms that the case using EBR provides
determine in advance the necessary amount of initial binffer & good bitrate (close to the case using ABR) and stable buffer
when average bitrate is used. This is the reason that avbragdevel (close to the case using HBR).
trate of a VBR video stream usually is not used as the stream’sThe bandwidth trace of the previous part is now employed
representative bitrate. to see how bitrate estimation helps the client in practies s

Now let’s use the highest bitrate of each alternative a®ijts r tings. Fig. 16 compares the bitrate and buffer level of twgesa
resentative bitrate, which is the choice of existing HTTiéatn- 1) Using HBR and 2) using EBR. The case of ABR is not in-

1500

Bitrate (kbps)

1000

500

Fig. 11. Segment bitrate of diffirent alternatives of test video.
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. . . . N Fig. 16. Comparison of the client behavior when the adaptation is based
Fig. 14. Client behavior when bitrate estimation is enabled. on the highest bitrate (HBR) or the estimated birate (EBR).
1
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f
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1
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o b = 2 S ©
4 0.4 4 ’
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Fig. 15. When the adaptation is based on the average birate (ABR), the ) o ) )
highest bitrate (HBR), or estimated birate (EBR): (a) CDF of bitrate Fig. 17._ When _the adaptation is based_on the highest bitrate (HBR) or
estimated birate (EBR): (a)CDF of bitrate and (b) CDF of buffer level.

and (b) CDF of buffer level.

Miso mode, the visual quality would be changed in a similar way to

throughput curves are not shown for the sake of clarity. We ’ngitching alternatives. If the number of alternatives igtar, the
sayitching will be smoother. So, in some sense, bitrate estim

see that when the adaptation is based on EBR, the resulting > . _ )
trate curve is significantly higher than the case of HBR. THEE" famhtates a k'”‘?' ot:hent-enablgd CER sireaming, where
CDFs of bitrate in Fig. 17(a) show that the advantage of usi video sourcesarein fact encoded in VBR que. The advan-
EBR exists in the whole range of birate. Meanwhile, the buff& g€ (?f this chent-enabl_ed CBR streammg IS that _whe_n band-
level of the case using EBR is stable and nearly the same as #4! th is a}bundant, the client may tum off bitrate ?St'm'aMd
then run in VBR mode. Meanwhile, when bandwidth is low, the

cluded here because it is not usually used in practice.

of the case using HBR (Figs. 16 and 17(b)).
g (Fig (b)) client will apply bitrate estimation and then achieve (D€BR
C. Discussion streaming With VBR \{ideo sources. O_f course, even in case_of
low bandwidth, the client can still decide to use VBR mode if

The results in the first experiment show that our proposggeferred.
method can capture quickly the changes of throughput, @d th The complexity of our throughput and bitrate estimation
adjust video bitrate accordingly. In other tests with ste&- methods is very low because they are just based on analytical
ment duration (e.g., 2 s or 4 s), the improvement in buffesita formulations. From our experience, the decision delay of ou
ity of our proposed method compared to the aggressive methagthod, which is from the instant of receiving the last byfte o
is not significant (about 1 s). This is because the number #kegment to the instant of obtaining the selected bitratthéo
throughput samples in short segment case is not as manytasagt segment, is very small (less than 1 ms). That means the es

in long segment case. timation methods essentially do not affect the playbacKityua
In the second experiment, an interesting finding is thatheve
using the simple intra-stream bitrate estimation, whichsisg
VI. CONCLUSION

the last segment bitrate, we can significantly improve tradityu
Sometimes the actual bitrate is higher than the througlgsut(  In this paper, we have studied the estimation of connection
Figs. 14 and 16); however, the errors are not big and thetclighroughput and video bitrate in adaptive HTTP streaming. A
still maintains a good buffer with very small variations.i¥h general formulation for throughput estimation was propose
suggests thatit may be unnecessary to employ more conggicaghking into account important factors such as instant down-
methods for intra-stream bitrate estimation. load throughput and RTT. Initial mechanisms for bitraténeat

It should be noted that, when a video is encoded in CB#®dn of VBR video were also presented. The experiment result
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showed that the proposed solutions were effective to maintgL9] R. Pantos, “HTTP live streaming,” Internet Draft drgfintos-http-live-
a stable buffer under fluctuations of bandwidth and video hi-

trate. Our goal in the future is to improve the throughputesst

tion process so that the client can quickly recognize tHeift

throughput patterns of different networks and then autaraly

[21]

adjust the estimation. Also, intra-stream bitrate estiomavill
be improved by using some simple content features such as fa@} T.Y. Huang, N. Handigol, B. Heller, N. McKeown, and R.hzwi, “Con-
tion activity.

[23]
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