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16-QAM Periodic Complementary Sequence Mates Based

on Interleaving Technique
Complementary

and Quadriphase Periodic
Sequence Mates

Fanxin Zeng, Xiaoping Zeng, Lingna Xiao, Zhenyu Zhang, amik® Xuan

Abstract: Based on an interleaving technique and quadriphase pe-
riodic complementary sequence (CS) mates, this paper prese a
method for constructing a family of 16-quadrature amplitude mod-
ulation (QAM) periodic CS mates. The resulting mates ariserom
the conversion of quadriphase periodic CS mates, and the piexd of
the former is twice as long as that of the latter. In addition,based
on the existing binary periodic CS mates, a table on the exishce
of the proposed 16-QAM periodic CS mates is given. Furthermie,
the proposed method can also transform a mutually orthogonk
(MO) quadriphase CS set into an MO 16-QAM CS set. Finally,
three examples are given to demonstrate the validity of the p-
posed method.

Index Terms: Aperiodic and periodic correlation, complementary

sequence set, quadrature amplitude modulation (QAM) constla-
tion, quaternary sequence.

I. INTRODUCTION

popular in communications, the design of high-TDR communi-
cation systems has assumed critical importance. In mamnpot

tial candidates, spread-spectrum code-division muk#zeess

(CDMA) communication systems, employing sequences ove

guadrature amplitude modulation (QAM) constellation asirth
spreading sequences, are significant owing to their inthewkn

vantages. More clearly, in comparison with the systemsgusi

traditional spreading sequences of the same length, thedfD
the former is a multiple of that of the latter [1]-[5]. In addi
tion, there also are other advantages related to sequewees

the QAM constellation, such as the fact that QAM Golay coms
plementary sequence (CS) sets can be applied to an orth

onal frequency division multiplexing (OFDM) communicatio
system so as to reduce the peak-to-mean envelope power
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(PMEPR) in such a system [6]-[16], and zero correlation zone
(ZCZ) QAM sequences can be employed in an approximately
synchronous CDMA communication system so as to remove
multiple access interference (MAI) and multi-path integfece
(MPI) synchronously and completely [17], [18].

This paper will focus on construction of QAM periodic CS
sets. The technique invariably used to investigate CSs d-to
vide them into periodic and aperiodic cases, respectiviely;
example, QAM Golay CS sets, which were referred to above,
belong to the aperiodic case. Tarokh and Sadjadpour deaived
method for producing QAM CSs with a low PMEPR by quad-
riphase Golay CSs [6]. Davis and Jedwab found the relation-
ship between Golay CSs and Reed-Muller codes [7]. Sadjadpou
described a family of non-squand-QAM sequences [8]. Lee
and Golomb discussed 64-QAM Golay CSs [10], and so did
Chang, Li, and Hirata [9]. Li investigated both 16-QAM and
64-QAM Golay CSs [12], [13], and Zeng al. discussed 16-
QAM Golay CSs as well [14], [15]. In addition, Fiedler, Jed-

._wab, and Parker proposed a framework for constructing Golay
Css [16]. On the other hand, although periodic and aperiodic

equences are equally important in communications, ali-ape
odic CSs must be periodic ones, whereas the reverse may not
hold [19, p. 332]. Hence, investigation of QAM periodic C$sse
is valuable. For instance, QAM sequences with low correfati
[8-[5], zCZ QAM sequences [17], [18], 8-QAM+ periodic CSs
[20], and almost perfect or perfect QAM sequences/arraljs{2
[124] are periodic sequences. In this paper, a family of 16MQA
eriodic CS mates will be presented that results from an-inte
eaving technique and quadriphase periodic CS mates.

This paper is organized as follows. In Section I, the rele-
Yant definitions referred to in this paper are recapitulatad
ection lll, the basic properties of some 16-QAM sequences
2% discussed. In Section IV, the proposed 16-QAM periodic C
n}ates are described, and three examples are includedlyfFinal

IO ' . .
e concluding remarks are made in Section V.

II. PRELIMINARIES

Throughout this paperB’ = (b},5,---,b},_,) denotes a
sequence set that consists bf subsequences, Whegé =
{B4()} = (04(0), B,(1), b4(2), -+, BY(N 1)) (0 < d < M —1)
denotes a sequence comprising complex values, havinghlengt
N, with b, () being the complex conjugate#f(t) and the sym-
bol j being an imaginary unit; that ig? = —1.

Definition 1: ForV b}, € B! andV b} € B", for a time shift
T, we refer to

1229-2370/13/$10.0q0) 2013 KICS
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i —3+3j —1+3j 1+3) 343
Ry (1) = S B0+ 7) (1) o o o’ o’
t=0
as a periodic correlation function (CF) betwe#h and b, 3+ “1+) 14/ 3+
where the sunt + 7 is calculated modulav. If [ = h and o i o *
d =k, Ry yt (1) is called a periodic autocorrelation function
(ACF); otherwise, it is called a periodic cross-correlatfanc-
tion (CCF).
Definition 2: Let B! = (b}, b}, -, b}, ,) consist ofM sub-
sequences, each of length If we have -3-j —-1-j 1-j 3-j
] [ [ ] [
M-1
ZR () = >0, 7=0 (mod N) o)
bl bl 0 , 70 (mod N) —3-3j ~1-3j 1-3/ 3-3j
k=0 ° ° ° o
we refer to the sequence st as a periodic CS set, denoted by

PCSSy(B',M,N), whereH = 4 and H = 16-QAM imply
that the corresponding sequences are quaternary and 16-QAM
ones, respectively. Whell = 2, the sequence sé&t' is called
a periodic CS pair.

Notes: In (2), whenr = 0 (mod N), the sum in the tradi-
tional CS sets equal®/ V, whereas it equals a multiple 61 NV
in the 16-QAM CS sets (see Section IV for more details).

Definition 3: For PCSSy (B!, M, N) and PCSSy(B",
M, N), if we have

Fig. 1. 16-QAM constellation.

both of which are mainly employed by [1]-[8], whefg, =
{0,1,2,3}.

Apart from those aforementioned two expressions, the au-
thors find that the 16-QAM symbols can be equivalently de-
scribed as follows

Expression 3:

M—-1
S Ry p(r)=0 (V1) 3) {=7(A+ )" + 25 )|ao, a1 € Zy} (6)
k=0

Expression 4:

we say that the sequence s&sand B are the mates to each . N @
other.y q {7 =5)G* =2 )]ao, a1 € Zs}. (7)

Definition 4: Let A consist of T' periodic CS sets | fact, Expression 3 makes four rotations of 16-QAM sym-
PCSSu(B, M,N) (1 <1 <T). For¥l, h(1<L,h<T pogsuchas +j - 1 —j - —1—j = —1+jor
andl # h), it PCSSy(B',M,N)andPCSSy(B",M,N) 143; 43_j _5_1-3j — —3+jand soon. Similarly, Ex-
are the mates to each other, we referitas a mutually orthog- pression 4 also makes four rotations. In particular, it isoshy
onal (MO) CS set. by utilizing this property of four expressions that we const

Definition 5: Let the symbolL denote a left cyclic shift 0p- the 16-QAM periodic CS mates. The 16-QAM constellation is
erator. This is, for a sequend§ € B' and an integel, shown in Fig.1.

LEBy = (B(0), b4(C + 1),-+-, bl (¢ + N — 1)), in which the
addition¢ + ¢ (¢t € [0, N — 1]) is performed moduldV. For B. An Interleaved Sequence
two sequence&ld andpy, if there exists an integef such that For the sequenceﬁbfi(t)} and {bZ(t)}, each of periodv,

I _ 71¢ph . . |
by = L by., these two sequences are said to ble equivalet construct a new sequence called an interleaved sequence d
otherwise they are said to be distinct. €SSy (B', M, N) noted by{b.,(¢')} ® {b(t')} orbld ® b as follows

and PCSSy(B", M, N), if there is an integet such that

b = LB (0 < k < M — 1), these two periodic CS sets ; ., ., s N . N
are said to be equivalent; otherwise, they are said to biaclist by®bg = (bg(0), 05(0), ba(1), b (1), - -+, by(N —1), bk(N_t)))
8

thich implies that the interleaved sequence has a leng2iVof

A. 16-QAM Symbols

The 16-QAM symbols can be driven by the QPSK symbo
[6]. This is, the 16-QAM symbols can be expressed by [1], [2].
Expression 1:
. NEW 16-QAM SEQUENCES AND THEIR
{(L+ )" +2j")]ao, a1 € Za} (4) PROPERTIES

Expression 2: Before we present the main results in this paper, some basic
correlation properties of the new 16-QAM sequences are dis-
{(1 = 5)(F* — 25" ao,a1 € Z4} (5) cussed. For the sake of convenience, throughout this setdio
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Proof: AgainonlyR FLh = .+ (7) is derived, for the rea-

sist of M quadrlphase subsequences of Ienzgfthand the non- sons mentioned earlier. Hence we have

negative integef satisfy0 <6 < N — 1.

ForV k (0 < k < M —1), the new 16-QAM sequences base&2 A l’h,f’l’h(T) =

on four expressions in (4)—(7) are defined as follows

v () = (L4 ) (GO 25 ),
vy () = < ) (GUr) gy, 9)
P ) = — ol (),
’“%t) = jug VM (t)

whose correlation properties are as follows.

Lemma 1: The autocorrelation functions of the 16-QAM se-

guences in (9) can be calculated with

sz‘»,l,hﬂ}znl,h (’7‘) = sz‘»,l,h,wz»,L,h (T)

(10)

RU;,l,hﬂ}k—,l,h (T) = Rw;,l,h7w;,l,h (T)

(11)
Proof: Owing to limitations of sapce, onli, FLh +lh(7')

is derived; the other derivations are similar. For a t|mét3h|
we have

RU$,l,h7v$,l,h (T) =
N-1

Z uk t)+2juk(t+5)][ 7uk(t+r)+2‘]7uk(t+5+‘r)]
t=0

(I4+5)(

(12)

This completes our proof. ]

Lemma 2: The cross-correlation functions of the 16-QAM

sequences in (9) can be calculated by

R@,l,h U;,l,h(T) = QJ[RUL ul (T—|—5) 2R“i “2( )+

13
2R 27 ZL( ) 4R 27 2(7’75)], ( )
Ryin o (7) = =25[Ryp oyt (T = 6) + 2Ryp 0 (7) (14)

—2Rul uz( ) 4R h(T+5)],

k Ugos U

szrlh I:»,lh('r) =JR ARGl +1.0(T), (15)
Rvk Ly L (T) = —ij;, h =l n(7), (16)
sz th, o (T) JR ARl n(7) (17)
RU; L h.’w; L,h('r) = ijf I hyv; ! h(’r) (18)

N-1
(145)(1+5) Z uk(t +2juk(t+5)” (t+5+‘r)72j7u§c(t+‘r)]
t=0
(19)
Hence, this lemma is proved. a

IV. NEW 16-QAM PERIODIC COMPLEMENTARY
SEQUENCE MATES

Consider the quadriphase periodic CS maRSSS, (U’
M, N) and PCSS,(U", M, N). By making use of the inter-
leaving technique, we construct two classes of 16-QAM se-
guences with length N as follows

x;hivzth ;1h7 (20)
L,h —Lh
Yot = @ (21)

whose properties are as follows.

Theorem 1: The 16-QAM sequence selé"" = (25", 24",

-,Qllé?il) andYhh = (gé’h,gll’h, .- -,QZ’M}LJ al’ePCSSm_QAM
(XL M, 2N) and PCSS1s.0am(Y'", M, 2N), respectively.

Proof: Only PCSS1e.qam(X"", M,2N) is derived, for

the reasons mentioned earlier. For the sake of conveniemce,
consider the odd and even time shifts.

Case1l: The eventime shift =2n (0 <n < N —1).

The relationship between the 16-QAM seque@i;,@ and its
cyclical shift version with the time shift = 2n is

vl:r b h(o)a v}:.’lyh(o)v v}:r,l-,h(l), v}:.’lyh(l)v Tt

vl ), v M), o 1), v M 1), - (22)
Hence, we have
N-1
_ LRy LR g
Ryn in(2n) = gvk )+ ) +
N-1
Z vk—,l,h(t/>vk—,l,h(t/ + 77)
t'=0
= R@,l,h ,U):r,l,h( n) + R byl (7).
(23)
After (10) and (11) are substituted into (23), (23) reduces t
Ry n(20) = 10[Ryy o (0) + Ry p ()] (24)
[t
Furthermore, we have
M—-1 M-1
ZRLh zn2’l7—1OZRLu§C ZRULLME(U)]
=0 k=0

_ 720MN, n=0 (mod N) (i.,e.,7=0 (mod 2N))
10 , n#Z0 (mod N)
(25)
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which results from Definition 2.

Case2: Theoddtime shifr =2n+1(0<n <N —1).

The relationship between the 16-QAM sequengé and its
cyclical shift version with the time shift = 2+ 1 is as follows

Lk —Lh Lk —.Lh
v (0), v t0), vl (L), v (),
vglh(n), vt 1), v 1), v 2),
(26)
Therefore, we have
_ +.4 h —J,h /
Rmkhvz%h@n + 1) = Z vy (ﬁ + 17) +

Vo MM+ 4+ 1)

Z”k

= Rv+,l,h —n(n )—I—va,z,h U+,z,h(77—|—1).
k L

h (27)
In accordance with (13) and (14), we obtain
M-1
> R, L g1 (204 1) = 2]{2 Ryt (n+08)—
k=0
M-1 M-1 M-1
k=0 k=0 k=0
M—-1 M-1
k=0 k=0
M-1 M—-1
2Y Ry a(n+1)—4> Ry uh(n+5+1)] =0 (28)
k=0 k=0
which is because
M-1
Z Ry ()= Ru.un(Q) (V) (29)
k=0
Z Ryt up(€) =0 (¥ () (30)
k=0
M-1
Z apa () =0V ). (31)

Summarizing Cases 1 and 2, this theorem follows immedi-

ately. O
Theorem 2: Two periodic CS sets?CSS1s.0am(X 5", M,

2N) and PCSSie.oam (YH", M, 2N) in Theorem 1 are the

mates to each other.
Proof:

the odd and even time shifts as well.
Case1l: The eventime shift =2n (0 <n < N —1).

According to Definition 3, we only need to show
that those two sequence sets satisfy (3). Similarly, weidens
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The relationship between the 16-QAM seque@i;@ and the
cyclical shift version of." with the time shiftr = 2 is

vl:r b h(())a v}:.’lyh(o)v v}:r,l-,h(1>, v}:.’lyh(l)v Tt

wi ), wp M), w4 1), w1,
(32)

As a consequence, we have

Rzi,h7y§€,h(277) = Rv;r’l’h,w;r’l’h(n) + Rv;,z,hyw;,z,h(n). (33)
Utilizing (15) and (16), we get

M-1 M—-1

D Ryt 1 (20) =65 Y[Ry un () = Ryt ot (0)]+

k=0 o=
M-1 M—-1

8 Y Ry up(m+08)+8i > Rypun—6=0 (34
k=0 k=0

which follows from (29)—(31).
Case2: Theoddtime shifr =2n+1(0<n <N —1).
The relationship between the 16-QAM seque@i;@ and the
cyclical shift version of/," with the time shiftr = 21+ 1is as
follows -

vliryl.’h(o)a v}:.’lyh(o)v v;r,l-,h(1>, v};.’lyh(l)v e

Lh Lh — Lk Lh
(), wi "+ 1), w " ( i

wy, (), wy, n+1), wy

(n+2),
(39)

Consequently, we have

Rw?hﬂi‘,h@n + 1) = Rv;,uh,w;,uh(n) + RU;,l,h7wk+‘,l,h(7’] +1).
(36)
Then, by (17) and (18), we can calculate
M-1 M-1 M-1
R Li L 277+1 = 2|: Z R, Lol (77+5)—2 Z R“Z»“Z(n)
k=0 k=0 k=0
M-1 M-1 M—1
+23 " Ry () 4Zhan6}+2[ZRhln5+1)
k=0 k=0
M-1 M-1
k=0 k=0

M—-1

—4 kzo Ryt up(n+0+ 1)] =0 (37)
which follows from (29)—(31) as well.

Clearly, this theorem is true. ad
Theorem 3: Let {PCSS, (U, M,N)|1 < I < T} be
an MO quadriphase CS set. Again, &2~ 1)+1 2(i-1)+2
and Y2(-D+1.20-1)+2 he constructed in accordance with
(20) and (21) from the mateBC'S S, (U 2!=D+1 A1 N) and
PCSSy(UCI=D+2 M N), wherel < [ < |T/2]. Then, we

obtain an MO 16- QAM CS set

{PCSS]_6-QAM(X2(l_1)+1’2(l_1)+27 ]\47 QN),

PCSSig.0am(Y2U-DHL20=D+2 ArooN) 1 <1 < |T/2]}
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Table 1. Autocorrelation values of PC'SSis.0am(X 12,4, 12) in (38).

auto corr. T
0 T 2 3 4 5 6 7 8 9 10 11
R 1z 12(r) | 120 | 12j | 0| —12j | —40 | —365 | 0 | 36j | —40 | 12j 0 | —12;5
T Tq
R 12 12(r) | 120 | —12j | 0 | 12j | —40 | 365 | 0 | —36j | —40 | —12j | O 125
1 7]
R 12 12(7) | 120 | 125 | 0| 205 40 | —20; | 0| 205 40 | —205 | 0 | —125
w2 2l
R 12 12(r) | 120 | —12; | 0 | —20; | 40 20; | 0| —20; | 40 205 0 125
212,01
sum 480 0 0 0 0 0 0 0 0 0 0 0

Table 2. Cross-correlation values between PCSS1g.gam(X 12, 4, 12) and PCSSie.gam(Y 142, 4, 12) in (38) and (39), respectively.

Cross cofr. T

0 1 2 3 4 5 6 7 8 9 10 11

R 12 o12 (1) 0 —12 327 —12 0 36 —967 36 0 —12 325 —12
To Y%

Rz 12(r) [ 0] 12 —32j 12 0 —36 965 —36 0 12 —32 12
T1 oY

R 12 JL2 () 0 —12 325 —44 —48j —44 325 —44 —48j —44 325 —12
Ty Yp

Rz 12(r) [ 0] 12 —32j 44 485 44 —32j 44 48; 44 —32j 12
T3 Y3

sum 0 0 0 0 0 0 0 0 0 0 0 0

where|a| denotes the largest integer not exceeding Example2: Consider an MO quaternary CS $6tC'SS,(U',

Proof:  For convenience, let; = 2(I; — 1) + 1 and 4,4)|1 <1 < 4}, copied from [27], as follows
to = 2(la— 1)+ 11 < Iy,ls < |T/2]). By Theorem 1,

t1,t1+1 t1ti+1 - thti+1 Ut ul ul ul ul 1232 0323 1232 0323
X andYt ' +1arePC’SSlG_QAM(X. ,M,2N) aqd | Wads 3032 2123 032 2123
PCSSie.0am(Y 1111 M, 2N), respectively. By employing | ys | = wg uy wy g | | 32122303 1030 0121
the method used to derive TheoremiZ;'S S1g.gam(X 111+, Ut wp Uy uy uy 1012 0103 3230 2321

M, 2N) and PCSSlGQAM(Xt2't2+1, M, 2N) (ll 7& 12)
PCSS6. QAM (Ytl’tl'H M, QN) and PCSSqe. QAM(YtQ’t2+1,
M,2N) (I; # l»), and PCSSie.0au (Xt1+1, M, 2N) and MO 16-QAM CS set as follows

Letd = 1. Thus, by utilizing Theorem 3 we can produce an

PCSSie.0am (Y212 FL M 2N) (V I3 andV [y) are the mates 1211 1 111 1
of each other, respectively. | L 3 -3-3-3-33-3-3
Here are two examples to help the reader understand. P = PN 20
Example 1: Consider the quadriphase periodic CS mats = = gi’z “|f1-11 1 -111 1 ; (40)
{PCSS,(U',4,6)|l = 1,2}, copied from [26]. zy AP A

3 3 -33-3-3-33

U] [wl ul wlul 113002 203312 010101 300211
[Uz] - [uo u% _% ﬁ] [122033 331220 021130 232323] 33 _.3_.3_.33
Lo 71717111 1 —-11
Let§ = 1. Then, by Theorem 2, the resulting 16-QAM peri- %9,2 ? —f —13 -3 —? ? —13 —13
odic CS mate is as follows Y2 = yh2 -33-3-3-33 [~ (41)
yh2 —1—1—11 1 1 -11
—-3-3-3-3333 -3 3 —3-3 3 ] =3 37373737337373
-1-1-1-111-11 -1 1 1 —1 1 -1 1 -11 1 1
%’2 1 1 -1-1-11-111-1 1 1)
xi2 _ zi?|  |\-3-33 3 -33-333-3-3-3 (38) 33 -3 3 -3 -3 -3 3)
T ey -1-3-3-1-1-11 —33—11—1) ’ 54 1 -1-1-11 -1
zl? -13 3 -13 3 -1-3313-3 z" 733333 -333
31-1-33 -3-31 1 —3-3-3 X34 |z -111-1111 (42)
-31-13 -1 1 -3-1-1-3-1-1)] zo* —3—3 3 -333 3 —3) ’
zot —1—1—1 1 11-11
73 -3 -3 -3 3 -3 -3
-11-11 1 -1-1-1-1-111) 17 -1 -1 1 —1—1—1)
Lo 3—33—3—33—3—3—3—333)
29’2 -333-3-3-3-3-33 3 —33 -111-11 11)
12 |yy?l |\-111-11 1 1 1 -1-1-11 —33333—333
Yor=ltel =1/)13313-3-13 3 -13 3 (39) y§’4 111 -1-1-11 -1
52,2 1 -33-11-1-1-3-3-1-1-1 Y34 — %’4 33-3 3 —3-3-3 3 (43)
= -3-1-1-3-1-1-31-13 -1 1 = |y —1 1 -1 -1 1 —-1-1-1
-31 1 -3-3-331-1-33 —3)_ ;3,4 -3 -3-3-3 3 -3 73>
=3 —1—1—1111—11
-3-3 3 —-333 3 —3)

where (j S j) expresses the elemeamtt bj in the 16-QAM

] whose correlation values are omitted because of limitatiah
constellation, and(._.‘gg_._)denotes a 16-QAM sequencepace.

(- a+bjct+dj,---). Because it is well known that all aperiodic CSs must be
For the sake of clarity, the autocorrelation values of (38) a periodic ones [19, p. 332], the quaternary aperiodic MO CS
the cross-correlation values between (38) and (39) aedlist sets given in [27] can be treated as periodic ones. Hence, we

Tables 1 and 2, respectively. have { PCSS,(U', 27+ 2mn)|1 < | < 271}, wherer and
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Table 3. Existing 16-QAM periodic CS mates come from binary periodic CS mates up to M = 12 and N = 50.

Binary CS sets [29]-[32] Binary CS mates Quaternary CS m@iesorem 5 [27]) Theorem 2 here
M|N M|N M|N M[2N
2,4,8,10, 16, 20, 26, (@4 2,4,8,10, 16, 20, 26, 4,8,16, 20, 32, 40, 52,
32, 34, 40, 50 32, 34, 40, 50 64, 68, 80, 100
4,8, 12, 16, 24, 28, 32,
36, 40, 44, 48 unknown unknown unknown
2,3,4,5,6,7,8,9,10, 2,3,4,5,6,7,8,9,10,
11, 12,13, 14, 15, 16, 11, 12,13, 14, 15, 16, 3(’)6’2?;2’;2’;3’;3’5’
17,18, 19, 20, 21, 22, 17,18, 19, 20, 21, 22, 3436 38 40 42, 44 4G,
23, 24, 25, 26, 27, 28, (a) 23, 24, 25, 26, 27, 28, 418 50 55, 54, 56. 58, 60,
29, 30, 31, 32, 33, 34, 29, 30, 31, 32, 33, 34, 6. 6466, 68, 70, 73 74,
35, 36, 37, 38, 39, 40, 35, 36, 37, 38, 39, 40, 26,87 80, 82, 84, 86, 88,
41, 42, 43, 44, 45, 46, 41, 42, 43, 44, 45, 46, 00, 92 94, 96. 98, 100
47, 48, 49, 50 47, 48, 49, 50 ) 99 T, 90, 98,
4,8, 12, 16, 20, 24, 28, unknown unknown unknown
32, 36, 40, 44, 48
2,4,6,8, 10, 12, 14, 16, 2,4, 6,8, 10, 12, 14, 16, 4,8, 12, 16, 20, 24, 28,
18, 20, 22, 24, 26, 28, (@a) 18, 20, 22, 24, 26, 28, 32, 36, 40, 44, 48, 52,
30, 32, 34, 36, 38, 40, 30, 32, 34, 36, 38, 40, 56, 60, 64, 68, 72, 76,
42,44, 46, 48, 50 42,44, 46, 48, 50 80, 84, 88, 92, 96, 100
1,8, 12, 16, 20, 24, 28,
7132, 36, 40, 44, 48 unknown unknown unknown
2,3,4,5,6,7,8,9,10, 2,3,4,5,6,7,8,9,10,
11,12, 13, 14, 15, 16, 11, 12,13, 14, 15, 16, 3(’)6’2?;2’;2’;3’;3’5’
17,18, 19, 20, 21, 22, 17,18, 19, 20, 21, 22, 34 3633, 40, 42, 44, 46,
23, 24, 25, 26, 27, 28, (@4 23, 24, 25, 26, 27, 28, sl48 50 52. 54. 56. 58, 60.
29, 30, 31, 32, 33, 34, 29, 30, 31, 32, 33, 34, 6. 6466, 68, 70, 73 74,
35, 36, 37, 38, 39, 40, 35, 36, 37, 38, 39, 40, 26,87 80, 82, 84, 86, 88,
41, 42, 43, 44, 45, 46, 41, 42, 43, 44, 45, 46, 00, 92 94, 96. 98, 100
47, 48, 49, 50 47, 48, 49, 50 ) 99 T, 90, 98,
4, 8,12, 16, 20, 24, 28,
32, 36, 40, 44, 48 unknown unknown unknown
2,4, 6,8, 10, 12, 14, 16, 2,4, 6,8, 10, 12, 14, 16, 4,8, 12, 16, 20, 24, 28,
10‘ 18, 20, 22, 24, 26, 28, (a4) 18, 20, 22, 24, 26, 28, 32, 36, 40, 44, 48, 52,
30, 32, 34, 36, 38, 40, 30, 32, 34, 36, 38, 40, 56, 60, 64, 68, 72, 76,
42,44, 46, 48, 50 42,44,46, 48, 50 80, 84, 88, 92, 96, 100
11@,2’85(13’21“1)?;421?;24, 28, unknown unknown unknown
2,3,4,5,6,7,8,9,10, 2,3,4,5,6,7,8,9,10,
11,12, 13, 14, 15, 16, 11,12, 13, 14, 15, 16, 366’22’;2’ ;g’ég’ ;g’ég’
17,18, 19, 20, 21, 22, 17,18, 19, 20, 21, 22, 34,36, 38, 40. 42 44 46,
12‘23,24,25,26,27,28, (@4 23, 24, 25, 26, 27, 28, 12]48. 50 52. 54, 56. 58, 60.
29, 30, 31, 32, 33, 34, 29, 30, 31, 32, 33, 34, 62,64, 66’68’70’72,74,
35, 36, 37, 38, 39, 40, 35, 36, 37, 38, 39, 40, 26, 87 80, 82, 84, 86, 88,
41,42, 43, 44, 45, 46, 41,42, 43, 44, 45, 46, 90,92 94,96, 98, 100
47, 48, 49, 50 47, 48, 49, 50 ) 9 9% 90, 98,
n are two positive integers (see [27] and [28] for their mean-
ings), which provides the rich raw materials from Theorem v+,l,h(t) (1+ j)(julk(t) i qug(tﬂ;i))
3. Hence, we haVQPCSSm_QAM(Zl,27+1,27+17’L)|1 <[l < k_’zl h ’ (45)
sy

J— y "U«h: 67, 'ul.

2"} by Theorem 3. Apart from the quaternary periodic CSs Uk,i (t) = (1= j)(juetto0) — 250(0)).
mentioned above, [25]-[27] can also provide such inputss TrBy applying these relations to (20), we obtain two 16-
is, for any binary periodic CS sg®CSS,(U!,2M’, N) con- iodi Lh

) y yp 2(U7, ; QAM periodic CS setsPCSSi6—oam (X", M,2N) and
sisting of2M’ subsequences that are each of len§ythwhere PCOSS16-0am (Xz,h M, 2N), where
Ul = (ub,ul,---,ub,, ), one of its mates is [19, p. 333] S
L =vl" oy P andzyl, = oyt 0 v " (46)

)

),

UM = (@, —ab, - @y, —Topy 44
(W, =Zo, - Boar -1, ~Lanr—2) (44) Then,PCSS16_oam (X", M, 2N) andPC'SS16_oam (XL", M,

where Qi- denotes the reversal of the sequende (for its 2N) are (_j|st!nct. Further, employing (20) yiel@s distinct 16-

definition, see [19, p. 32]. In accordance with Theorem @AM perpdlc CS sets. L

in [27], the aforementioned mate3C'SSy(U!,2M’, N) and Proof: Provided that]johﬁl 7 52'P05516*9AM(X1' M,

PCSS, (U, 2M’, N) must result in the quaternary periodic2V) and PCSSi6-qam(Xy", M, 2N) are equivalent to each

CS matesPCSS4(X' 2M’,N) and PCSS,(X",2M’, N) other; that is, there exists an integeso as to satisf;@ﬁc’ﬁ =

(for X! an Xh, see [27])5 orPCh'SS4(Zl,2M’,2N) and r¢gbh (0 < k < M —1). We can, then, conclude that a con-

PCSSy(Z",2M',2N) (for Z* andZ", please see [26, p. 240].tradiction must appear. In fact, fofk we consider two cases:

whereN is an odd integer), respectively. As a consequence, We-2rand¢ =2r+1(0<n7 <N —1).

obtain 16-QAM periodic CS mateBC'S Sig.0am(X ", 2M", Casel: ¢ = 2r.

2N) andPC'SSie.qam(Y"", 2M’, 2N) by employing Theorem  Clearly, the relationship between the 16-QAM sequentés

2 in this paper. In conclusion, in accordance with the exdgsti "

binary periodic CS mates up fd = 12 andN = 50 [29][32],

the 16-QAM periodic CS mates that result from Theorem 2 '&‘,:f’h(o), U;il’h(o)v v,f;’ll"h(l), U;il’h(l)v

this paper are listed in Table 3.

27, Lk
andL zy 508

)

Lk —Lh Lk —Lh
The following theorem gives the distinct 16-QAM periodié’ztz (), vy (), vy (m+ 1), vy (m+ 1), -+ (47)
CS sets from Theorem 1. o As a consequence, from Definition 5 we have
Theorem 4: For the quaternary periodic CS matB¢§’S'S,
(U, M, N)andPCSS,(U", M, N), let two integers; ands, v = Lol 48)
satisfyd; # 92 (0 < 91,00 < N—1). ForvVk(0< k< M-1) le’f’h _ Lﬂygg,h
andi = 1,2, ' ’

which reduces to



ZENGet al.: 16-QAM PERIODIC COMPLEMENTARY SEQUENCE MATES BASED ON .. 587

from (2) and (3).
Hence, according to (55) and (57) we have

M—-1

{ JU®)  juilttm) = o[jul(thdatm) _ jull(t+8)],
MN =" Ry ,i(0)=0 (59)
k=0

2[juk(®) — juk(t+m] = jup(t+81) _ jui(t+3a+m)
k

(49)

with the application of (45). Further, (49) is simplified to which is clearly impossible.
In addition, when the parametéwaries over the range 0 to

ju®) = juk(t+w) v t, N — 1, the foregoing derivation guarantees that Meesultant
jug(t+62+w) _ ju;;(ural) vt (50)  16-QAM CS sets from Theorem 1 are distinct from one another.
O

which implies both that = 0 andd; = d,. Obviously, thisisa ~ Example3: In Example 1, let = 2. Therefore, we have

contradiction.

. -3-31-1313 -3-1-1-31
Case2: ¢ =2m + 1. _ ~1-13-3-31-1 1 3 3—3—1)
Similarly, the relationship between the 16-QAM sequences g(x -33 -1-3-11331 -3 1 1
L,h Lh e o , —1— _ “1-3-3—
zyy andL*™Hay ) is given by XM= 10| = j1 71 é —31 33 i; —113311 z)13 313 ,
e 33 3-1-113-331 7171)
B -113 -3-1-3 1 1—3—31—3)
+,1,h —,Lh +,1,h —,1,h -33-11-13 -3-3-1-1-1-3
Uk,1 (0), Uk (0), Uk 1 (1), U1 (1), -+ (51) 60
—.L,h +.,1,h 1 —.L,h 1 +,1,h 9 (60)
Oy (M), vy (M4 1), vy (4 1), vy (4 2), -
(52)
-11 3 3 —3—1—1—13—3—31)
Hence, by Definition 5 we have 2 3 -3-1-1-31-3-31-131
o, 11-1-3-3-3 1 -1-1 3 =33
yh2— |y = [\831 831 1 -33 -1-3-11
o bl — bk - y}’z 3-331-1-13 3 3 —-1-11
k1 —’§=2+;h (53) Y2 1-13-1-3-3-1-1-3-1 3 —3
vy =Ly =3 —3-3-1-1-1-3-33-11 —1 3)
’ ’ 1 1 -3-31-3-113 —-3-1-3
Substituting (45) into (52) yields (61)
jui(t) + gju;’é(twl) — Clearly, the resultant 16-QAM CS sets in (38), (39), (59 an
j[juk o) _ gjul(tm)] (54a) (60) are cyclically distinct from one another.
juk (t+61) _ 9 jup(t) —
J S (54b)
j[jufe(t+7r+1) _|_2ju,’;(t+52+7r+1)]_ V. CONCLUSION

_ In this paper, we construct a family of 16-QAM periodic CS
Multiplying juif(t) to the right-hand side in (53a), and applymates, and expand the resultant mates to a class of MO 16-QAM
ing to (1), yields CS sets. The proposed methods are applicable to conveffsion o
all currently known quadriphase CS mates to 16-QAM ones.

hy S B (55)
J(Bup (=02 =) = 2Ry 1 (=) ACKNOWLEDGMENTS
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