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Asymptotic Capacity Analysis in Multipoint-to-Point
Cognitive Radio Networks with an Arbitrary Peak Power

Jianbo Ji, Wen Chen, and Shanlin Sun

Abstract: In this paper, we investigate the capacity of a multipoint-
to-point cognitive radio network. In existing works, the asymptotic
capacity is only obtained in the high peak power region at sec-
ondary transmitter (ST) or obtained without considering the inter-
ference from primary transmitter (PT) for easy analysis. Here, we
analyze the asymptotic capacity by considering an arbitrary peak
power at the ST and the interference from the PT based on ex-
treme value theory. Simulation results show that our approximated
capacity is well-matched to the exact capacity. Furthermore, the
scaling law of our capacity is found to be double logarithm of the
number of secondary users.

Index Terms: Asymptotic capacity, cognitive radio, extreme value
theory, interference temperature.

I. INTRODUCTION

Currently, modern radio spectrum management is faced with
the challenge of accommodating a growing number of wireless
applications and services on a limited amount of spectrum. Cog-
nitive radio (CR) technology has been proposed as a promising
solution to implement efficient reuse of the licensed spectrum
by unlicensed/secondary devices [1], [2]. Generally, three cat-
egories of CR network paradigms have been proposed: Over-
lay, interweave and underlay [3]. In the underlay CR, which is
the focus of this paper, a secondary user (SU) is allowed to uti-
lize primary user (PU) spectrum only if the interference caused
by the SU is regulated below a predetermined level. The max-
imum allowable interference power is called interference tem-
perature [3]–[6], which guarantees the quality of service (QoS)
of the PU regardless of the SU’s spectrum utilization. This type
of CR is also known as “spectrum-sharing” [3], [4].

Recently, ideas from opportunistic communication were used
in spectrum-sharing cognitive radios by selectively activate one
or more SUs to maximize the CR throughput while satisfy-
ing interference constraints. The average capacity in cognitive
networks is studied in [4], [5], [7], and [8], by selecting the
SU with the highest signal-to-noise-ratio (SNR) or signal-to-
interference-and-noise-ratio (SINR) under the interference con-
straints.

In [5], [7], and [8], the authors found that the SU capacity can
be increased by simultaneously activating as many secondary
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transmitters (STs) as possible. However, these asymptoticanal-
ysis only propose scaling laws for asymptotic SNR, rather than
providing exact results. In [4], the closed-form capacity was de-
rived by hypothesis that the transmit peak power of ST is suffi-
ciently larger than interference temperature. The provided con-
cise statistical distribution of the received signal at theSU by
the hypothesis is convenient to analyze the capacity. However,
this assumption results in less accurateness in limiting statisti-
cal distribution, and the asymptotic capacity in [4] has much
gap to the exact one. In [5], the authors derives capacity scal-
ing limits for average transmit power constraint at ST which
did not consider the maximum transmit power constraint at the
ST. These results in [4], [5], and [7] ignore the interference from
the primary transmitter (PT) to secondary receivers (SRs).In a
practical spectrum-sharing CR, since the SU and PU coexist in
the same spectral band, the interference at SR, generated bythe
nearby PTs is not negligible and must be considered in the ca-
pacity analysis.

Motivated by these observations, in this paper, the peak trans-
mit power of SU is considered to be arbitrary and the interfer-
ence from PU is also taken into consideration. Based on the ex-
treme value theory, the asymptotic capacity is derived and the
scaling property of the capacity is presented. Simulationsshow
that our capacity expression is much accurate than the existing
result and very closed to the exact one.

The rest of this paper is organized as follows. Section II in-
troduces the system and channel model. In Section III, we an-
alyze the asymptotic capacity of the system. Numerical simu-
lation results are provided to validate the theoretical results in
Section IV. Finally, conclusion is drawn in Section V.

II. SYSTEM AND CHANNEL MODEL

A spectrum-sharing homogeneous uplink network in a single
cell system is considered in Fig. 1, where a multipoint to point
CR networks coexist with an active pair of PUs which includes
a PT and a primary receiver (PR). A set ofN SUs utilize a spec-
trum licensed to the PT. All users in the network are assumed to
be equipped with a single antenna. In the spectrum sharing sys-
tems, any transmission from the SU to the secondary basestation
(SBS) is allowed provided that the resulting interference power
level at the PR is below the interference temperature constraint.
The channel gains from thejth SU to the PR and the SBS are de-
noted bygj andβj , respectively, wherej ∈ {1, · · ·, N}, which
are assumed to be well known at the SU by reliable feedback
and the channel gain from the PT to the SBS is denoted byαps.

Depending on the available interference channel gaingj, the
SU then computes the maximum allowable transmit power so as
to satisfy the interference temperature constraint at the PR.

1229-2370/13/$10.00c© 2013 KICS



JI et al.: ASYMPTOTIC CAPACITY ANALYSIS IN MULTIPOINT-TO-POINT COGNITIVE... 577

SBS

PR PT

Fig. 1. The system model for a CR network coexisting with a pair of PUs.

The SU allocates its peak power for transmission provided
that the interference temperature is satisfied with its peak
power. Otherwise, it adaptively adjusts its transmit powerto the
allowable level so that the interference perceived at the PRis
maintained as a given interference temperature levelQ. Corre-
spondingly, the transmit power of thejth SU

Pj = min

(

P,
Q

gj

)

(1)

whereP represents peak transmit power of the SU.

III. ASYMPTOTIC CAPACITY ANALYSIS

Considering the interference from the PT, the received SINR
at the target secondary receiver is given by

γj =
Pjβj

Ppαps + σ2
=

tj
I + σ2

(2)

wheretj = Pjβj , I = Ppαps, andσ2 denote the variance of
white Gaussian noise, respectively. The variablePp denotes the
transmit power of the PT. Similar to [4], to simplify mathemati-
cal analysis,αps, βj, andgj are assumed to be independent and
identically distributed (i.i.d.) exponential random variables with
unit mean, andσ2 = 1. The cumulative density function (cdf)
of the received SNRtj at the secondary receiver from thejth
SU is [4]

Ftj (x) =
(

1− e−
Q
P

)

(

1− e−
x
P

)

+ e−
Q
P

(

1−
Q

Q+ x
e−

x
P

)

.

(3)

By using a transformation of random variable, the cdf of
received SINRγj at the secondary receiver withfI(y) =

e−y/Pp/Pp can be expressed as

Fγj
(γ) = Pr(tj < γ(I + 1))

=

∫

∞

0

Ftj (γ(y + 1)) fI(y)dy

= 1−

(

1− e−
Q
P

)

e−
γ
P

1 +
γPp

P

−
Q

γPp
e

Q+γ
γPp

× Γ

(

0,

(

1 +
Q

γ

)(

1

Pp
+

γ

P

))

(4)

where the upper incomplete Gamma function is defined as
Γ(x, y) =

∫

∞

y hx−1e−hdh, and the derivation of cdf yields the
probability density function (pdf) in (5).

fγj
(γ) =

Q

γ3P 2
p

e
γ+Q
γPp

[

(Q+ γPp)Γ

(

0,
Q+ γ

γ

(

1

Pp
+

γ

P

))

+
γPp(γ

2Pp −QP )

(γ +Q)(γPp + P )
e
−(1+Q

γ )
(

1
Pp

+ γ
P

)
]

+
γPp + P (1 + Pp)

(γPp + P )2

(

e
Q
P − 1

)

e−
γ+Q
P .

(5)

Now the SBS chooses the SU that has the maximal received
SINR fromN SUs at each transmission, therefore, the average
capacity of CR network is given by [4]

Cave , E [log (1 + γmax)] =

∫

∞

0

log (1 + γ) fγmax
(γ) dγ

whereγmax , max
1≤i≤N

γi , whose pdf is denoted as

fγmax
(γ) = Nfγi

(γ)Fγi
(γ)

N−1
.

However, this integration is not solvable for largeN . Conse-
quently, in this work, we attempt to evaluateCave in the asymp-
totic regime of largeN . We need the following lemma to iden-
tify the asymptotic distribution of received SINR. The distribu-
tion function ofγj , Fγj

(γ), determines the exact limiting dis-
tribution. The following lemma indicates a sufficient condition
for a distribution functionFγmax

(γ) belonging to the domain of
attraction of the Gumbel distribution.

Lemma 1: As the number of SUN → ∞, for the cdf of
γj in (4), the variable(γmax − aπ)/bπ converges to a standard
Gumbel random variable with pdfexp(−e−x). The location and
scale parametersaπ andbπ are, respectively,

aπ = F−1
γj

(1− 1/N) , (6)

bπ = F−1
γj

(1− 1/(Ne))− aπ (7)

whereF−1
γj

(x) = inf{γ : Fγj
(γ) ≥ x} represents the quantile

function of the distribution ofγj .
Proof : For i.i.d. positive random variables with continuous

and strictly positive pdffγj
(γ) and cdfFγj

(γ), the main nec-
essary condition for attraction to the Gumbel distributionis
lim
γ→∞

(

1− Fγj
(γ)

)

/fγj
(γ) = c > 0 [9], [10], wherec is con-

stant. Compared with the restriction that the peak transmitpower
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of the SUP is in high region [4], we assume thatP is ar-
bitrary. From (4) and (5), by using well-known computational
software such as Wolfram Mathematica, it follows

lim
γ→∞

1− Fγj
(γ)

fγj
(γ)

= P > 0.

Therefore,Fγmax
(γ) belongs to the domain of attraction of

the Gumbel distribution.
Lemma 1 show that asN → ∞, the cdf ofγmax becomes

Fγmax
(γ) = exp

(

−e−(γ−aπ)/bπ
)

. Based on Lemma 1, the av-
erage capacity of the CR network is shown in the following the-
orem.

Theorem 1: For largeN , the average capacity of the CR net-
work can be evaluated by the following expression

Cave ≈ aφ + E0bφ (8)

whereE0 = 0.5772 · · · is the Euler constant [11],aφ andbφ are
in (9) and (10), respectively.

Proof: From Lemma 1,γmax belongs to the Gumbel distri-
bution. According to the limiting throughput distributiontheo-
rem in [11], the instant capacityCins = log(1 + γmax) also
falls into the domain of the attraction of the Gumbel distribu-
tion. i.e., there must exist normalizing constantsaΦ andbΦ, the
variable(Cins − aφ)/bφ also uniformly converges in distribu-
tion to a Gumbel random variables asN → ∞. Furthermore,
The normalizing constantsaΦ andbΦ are naturally transformed
from (6) and (7) into [11]

aφ = log (1 + aπ) , (9)

bφ = log (1 + bπ)− log (1 + aπ) . (10)

In general, convergence in distribution does not guaranteethe
moment convergence. However, according to Lemma 2 in [11],
we can obtain that convergence in distribution for the nonnega-
tive maximum random variable results in moment convergence,
and the average capacity of the CR networkCave

Cave = E [Cins] ≈ aφ + E0bφ. (11)

In the following, we need to seek the values ofaπ and bπ.
Since the exact solutions to the parameters involve with theup-
per incomplete Gamma function, the closed-form expressions of
aπ andbπ can not be obtained. Fortunately, since the function
Fγj

(γ) monotonically increases inγ, aπ, andbπ always have
a unique solution. It is in general non-trivial to obtain accurate
closed-form expressions for the location and scale parameters,
which values can be calculated byfsolve function in Matlab.

The asymptotic approximation in (8) is much accurate com-
pared to the previous analysis in [4] and closely approximates
to the exact simulation capacity. This is because that our analy-
sis is based on exact statistical probability. However, theavail-
able results [4] is obtained under the assumptionP ≫ Q or
P ≫ NQ. This assumption results in a great deviation to exact
statistical probability in limiting statistical probability.

Although the closed-form expressions ofaπ and bπ is not
available, we can obtain their scaling law property. Now, we
address the following theorem.

Theorem 2: For fixedP , Pp, andQ, the capacity (8) obeys
the asymptotic growth rate as

lim
N→∞

Cave

log logN
= 1.

Proof: From (4) and (6), we have

(

1− e−
Q
P

)

e−
γ
P

1 +
γPp

P

+
Q

γPp
e

Q
γPp

+ 1
Pp

× Γ

(

0,

(

1 +
Q

γ

)(

1

Pp
+

γ

P

))

=
1

N
. (12)

It is note that the closed-form expression of upper incomplete
Gamma functionΓ (0, (1 +Q/γ) (1/Pp + γ/P )) can not be
obtained, we may consider it’s bounds. Applying the the fol-
lowing equality [13]

1

2
log

(

1 +
2

γ

)

≤ eγΓ (0, γ) ≤ log

(

1 +
1

γ

)

for 0 < γ < ∞, from (12), we can obtain the following inequal-
ities, respectively.

e−
γ
P

γPp(P + γPp)

(

Q(P + γPp)e
−

Q
P log

(

1 +
γPpP

(γ +Q)(P + Ppγ)

)

+ PPp

(

1− e−
Q
P

)

γ
)

≥
1

N
,

(13)

e−
γ
P

γPp(P + γPp)

(

Q

2
(P + γPp)e

−
Q
P log

(

1 +
2γPpP

(γ +Q)(P + Ppγ)

)

+ PPp

(

1− e−
Q
P

)

γ
)

≤
1

N
.

(14)

Since the fact that the received SINRγ at SU becomes large
asN → ∞, theγPpP/((γ + Q)(P + Ppγ)) term in (13) and
(14) become very small. Fromlog(1 + x) ≈ x whenx is small,
andγ+Q ≈ γ whenγ is large, the left sides of (13) and (14) are
equal. Therefore, we have the following expression after some
manipulations

e−
γ
P

γPp(P + γPp)

(

PPp

(

1− e−
Q
P

)

γ +QPpPe−
Q
P

)

=
1

N
.

(15)
From the left side of (15), we can conclude that the

term PPp

(

1− e−Q/P
)

γ becomes dominate and the term
QPpPe−Q/P gets nonactive asN increases. Therefore, the so-
lution of (15) without considering the termQPpPe−Q/P is (16),
whereW (·) denotes the Lambert W function.

γ = P
(

logN − logPp + log
(

PPp

(

1− e−
Q
P

)))

+ 1/PpW







e

(

1
Pp

+log

(

NPPp

(

1−e−
Q
P

)))

PpP







− log
(

NP
(

1− e−
Q
P

))

− 1/Pp. (16)
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Fig. 2. CR average capacity versus N for P = 20 dB, Pp = 10 dB, and
Q = 0 dB.

That is,aπ = γ. WhenN → ∞, the second term in (16)
can be approximated as1/PpW

(

N
(

1− e−Q/P
))

. In addition,
we haveW (z) ≈ log z for largez [12]. Therefore,aπ ≈ (P +
1/Pp − 1) logN asN → ∞. By substitutingaπ into (9), the
limiting value ofaφ is given by

lim
N→∞

aφ = lim
N→∞

log (1 + (P + 1/Pp − 1) logN) = log logN.

(17)
Next, the normalizing constantbφ can be shown to vanish

lim
N→∞

bφ = lim
N→∞

log

(

1 + (P + 1/Pp − 1)(logN + 1)

1 + (P + 1/Pp − 1) logN

)

= 0

(18)
asN → ∞. By inserting (17) and (18) together into (8), we
have Theorem 2. Theorem 2 proves that the average capacity
Cave scales asΘ1 (log (logN)) over Rayleigh fading channels,
which is similar to that in [4] and [5]. From Theorem 1 and
Theorem 2, our asymptotic capacity reinforces the results in [4],
[5], [7], and [8].

IV. NUMERICAL RESULTS

Here, we present simulation results to validate our analy-
sis. Fig. 2 shows the average capacity versus the numberN of
SU forP = 20 dB,Pp = 10 dB, andQ = 0 dB.

The aπ and bπ in Fig. 3, which are used to evaluate the
capacity in Fig. 2, are obtained byfsolve function in Mat-
lab2007a. By using thefsolve function, we can obtain their final
values by setting their initial values as a very small constant, e.g.
fsolve (@(x) myfun(x), [0.0001], options). From Fig. 2, we
observe that our approximation result (8) is quite well-matched
to the exact capacity simulation, which is more accurate than the
results in [4]. From the simulation results in [4], we know that
Theorem 1 and Theorem 2 in [4] is about0.6 nats/s/Hz capacity
gap compared with those of exact capacity simulation. And the
results in [5] only provides the scaling property of asymptotic
capacity. The simulation curves show that the capacity increases
with the number of SUs, which scales asΘ(log (logN)).

1In this paper,f (n) = Θ (g (n)) if and only if there are constantsc1, c2,
andn0 such thatc1g (n) ≤ f (n) ≤ c2g (n) for anyn > n0.
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Fig. 3. The location and scale parameters aπ and bπ by fsolve function
for P = 20 dB, Pp = 10 dB, and Q = 0 dB.
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Fig. 4. CR average capacity versus different peak transmit power P for
N = 500, Pp = 10 dB, and Q = 0 dB.
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Fig. 5. The location and scale parameters aπ and bπ for different peak
power P for N = 500, Pp = 10 dB, and Q = 0 dB.

Theaπ andbπ in Fig. 5, which are used to evaluate the capac-
ity in Fig. 4. Fig. 4 shows the average capacity versus different
peak powerP for Pp = 10 dB,N = 500, andQ = 0 dB. From
Fig. 4, the approximated result well agrees with the exact ca-
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pacity simulation in all the power region, especially in thelow
power region. However, the results in [4] only addresses that in
high power region.

V. CONCLUSION

In this paper, we have analyzed the asymptotic capacity in a
CR uplink system with an arbitrary peak transmit power and
considering the interference from the PT. Simulation results
show that our capacity approximation is much accurate com-
pared to the existing result, which is quite well-matched tothe
exact capacity. Furthermore, our analysis reveals the average ca-
pacity scaling lawlog logN . In the future work, we can investi-
gate the capacity of multiple input single output (MISO) cogni-
tive network with the multiple pairs of primary users, whichis
worthy to be investigated.
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