생물학적 질소.인 동시제거 시스템에서 탈질미생물의 인 제거 가능성

Possibility of Anoxic Phosphorus Removal by Denitrifier in Denitrifying EBPR System

  • 이한샘 (고려대학교 환경기술정책연구소) ;
  • 윤주환 (고려대학교 환경시스템공학과)
  • Lee, Hansaem (Research Institute for Environmental Technology and Sustainable Development, Korea University) ;
  • Yun, Zuwhan (Department of Environmental System Engineering, Korea University)
  • 투고 : 2013.08.16
  • 심사 : 2013.11.12
  • 발행 : 2013.11.30

초록

Enhanced biological phosphorus removal (EBPR) behavior and microbial characteristics in the anaerobic-aerobic SBR (PAO SBR) and the anaerobic-anoxic SBR (DPAO SBR) were examined in this research. For 392 days of operation, both SBRs have exhibited a good EBPR (or denitrifying EBPR) performance. $P_{release}/P_{influent}$ ratio was highest in both reactors after the stabilization, while the efficiency of phosphorus removal was decreased since the sludge granulation has been visually observed within the reactor. The comparative analysis of Pyrosequencing-based microbial population between PAO and DPAO sludges showed indirectly that Dechloromonas spp. could utilize $O_2$ and $NO_3{^-}-N$ as an electron acceptor and Accumulibacter phosphatis use only $O_2$ in EBPR system. Also, we concluded that Thauera spp. as a denitrifier contribute significantly to the anoxic phosphorus removal in the DPAO system.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Ahn, J., Daidou, T., Tsuneda, S., and Hirata, A. (2002). Transformation of Phosphorus and Relevant Intracellular Compounds by a Phosphorus-Accumulating Enrichment Culture in the Presence of Both the Electron Acceptor and Electron Donor, Biotechnology and Bioengineering, 79(1), pp. 83-93. https://doi.org/10.1002/bit.10292
  2. Ahn, J., Schroeder, S., Beer, M., McIlroy, S., Bayly, R. C., May, J. W., Vasiliadis, G., and Seviour, R. J. (2007). Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor, Applied Environmental Microbiology, 73(7), pp. 2257-2270. https://doi.org/10.1128/AEM.02080-06
  3. American Public Health Association, American Water Works Association, Water Environment Federation (APHA, AWWA and WEF). (2005). Standard Methods for the Examination of Water and Wastewater, 21st Eds., Washington DC, USA.
  4. Bao, L. L., Li, D., Li, X. K., Huang, R. X., Zhang, J., Lv, Y., and Xia, G. Q. (2007). Phosphorus Accumulation by Bacteria Isolated from a Continuous-Flow Two-Sludge System, Journal of Environmental Science, 19(4), pp. 391-395. https://doi.org/10.1016/S1001-0742(07)60065-5
  5. Beer, M., Stratton, H. M., Griffiths, P. C., and Seviour, R. J. (2006). Which Are the Polyphosphate Accumulating Organisms in Full-Scale Activated Sludge Enhanced Biological Phosphate Removal Systems in Australia?, Journal of Applied Microbiology, 100(2), pp. 233-243. https://doi.org/10.1111/j.1365-2672.2005.02784.x
  6. Bond, P. L., Hugenholtz, P., Keller, J., and Blackall, L. L. (1995). Bacterial Community Structures of Phosphate-Removing and Non-Phosphate-Removing Activated Sludges from Sequencing Batch Reactors, Applied and Environmental Microbiology, 61(5), pp. 1910-1916.
  7. Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Mino, T., Alaerts, G. J., and Heijnen, J. J. (1998). Effect of Polyphosphate Limitation on the Anaerobic Metabolism of Phosphorus-Accumulating Microorganisms, Applied Microbiology and Biotechnology, 50(2), pp. 273-276. https://doi.org/10.1007/s002530051289
  8. Carvalho, G., Lemos, P. C., Oehmen, A., and Reis, M. A. (2007). Denitrifying Phosphorus Removal: Linking the Process Performance with the Microbial Community Structure, Water Research, 41(19), pp. 4383-4396. https://doi.org/10.1016/j.watres.2007.06.065
  9. Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L. L. (2000). Identification of Polyphosphate-Accumulating Organisms and Design of 16S rRNA-Directed Probes for Their Detection and Quantitation, Applied and Environmental Microbiology, 66(3), pp. 1175- 1182. https://doi.org/10.1128/AEM.66.3.1175-1182.2000
  10. Datta, T. and Goel, R. (2010). Evidence and Long-Term Feasibility of Enhanced Biological Phosphorus Removal in Oxidation-Ditch Type of Aerated-Anoxic Activated Sludge Systems, Journal of Environmental Engineering, 136(11), pp. 1237-1247. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000259
  11. Eschenhagen, M., Schuppler, M., and Roske, I. (2003). Molecular Characterization of the Microbial Community Structure in Two Activated Sludge Systems for the Advanced Treatment of Domestic Effluents, Water Research, 37(13), pp. 3224-3232. https://doi.org/10.1016/S0043-1354(03)00136-2
  12. Fuhs, G. W. and Chen, M. (1975). Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater, Microbial Ecology, 2(2), pp. 119-138. https://doi.org/10.1007/BF02010434
  13. Glockner, J., Kube, M., Shrestha, P. M., Weber, M., Glockner, F. O., Reinhardt, R., and Liesack, W. (2010). Phylogenetic Diversity and Metagenomics of Candidate Division OP3, Environmental Microbiology, 12(5), pp. 1218-1229. https://doi.org/10.1111/j.1462-2920.2010.02164.x
  14. Goel, R. K., Sanhueza, P. and Noguera, D. R. (2005). Evidence of Dechloromonas sp. Participating in Enhanced Biological Phosphorus Removal (EBPR) in a Bench-Scale Aerated-Anoxic Reactor, Water Environment Federation, Washington D.C., pp. 3864-3871.
  15. He, S., Gall, D. L. and McMahon, K. D. (2007). "Candidatus Accumulibacter" Population Structure in Enhanced Biological Phosphorus Removal Sludges as Revealed by Polyphosphate Kinase Genes, Applied and Environmental Microbiology, 73(18), pp. 5865-5874. https://doi.org/10.1128/AEM.01207-07
  16. He, S. M., Bishop, F. I.. and McMahon, K. D. (2010). Bacterial Community and "Candidatus Accumulibacter" Population Dynamics in Laboratory-Scale Enhanced Biological Phosphorus Removal Reactors, Applied and Environmental Microbiology, 76(16), pp. 5479-5487. https://doi.org/10.1128/AEM.00370-10
  17. Kim, J. M., Lee, H. J., Kim, S. Y., Song, J. J., Park, W., and Jeon, C. O. (2010). Analysis of the Fine-Scale Population Structure of "Candidatus Accumulibacter Phosphatis" in Enhanced Biological Phosphorus Removal Sludge, Using Fluorescence in situ Hybridization and Flow Cytometric Sorting, Applied and Environmental Microbiology, 76(12), pp. 3825-3835. https://doi.org/10.1128/AEM.00260-10
  18. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., and Chun, J. (2012). Introducing EzTaxon-e: a Prokaryotic 16S rRNA Gene Sequence Database with Phylotypes that Represent Uncultured Species, International Journal of Systematic and Evolutionary Microbiology, 62, pp. 716-721. https://doi.org/10.1099/ijs.0.038075-0
  19. Kong, Y. H., Nielsen, J. L., and Nielsen, P. H. (2004). Microautoradiographic Study of Rhodocyclus-Related Polyphosphate- Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants, Applied and Environmental Microbiology, 70(9), pp. 5383-5390. https://doi.org/10.1128/AEM.70.9.5383-5390.2004
  20. Kong, Y. H., Nielsen, J. L., and Nielsen, P. H. (2005). Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate- Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants, Applied and Environmental Microbiology, 71(7), pp. 4076-4085. https://doi.org/10.1128/AEM.71.7.4076-4085.2005
  21. Kong, Y. H., Xia, Y., Nielsen, J. L., and Nielsen, P. H. (2007). Structure and Function of the Microbial Community in a Full-Scale Enhanced Biological Phosphorus Removal Plant, Microbiology-The Society for General Microbiology, 153, pp. 4061-4073.
  22. Lee, H. (2013). Biochemical and Microbial Characteristics of Denitrifying Phosphorus Accumulating Organism and its Application in 4 Stage Anoxic Membrane Bioreactor, PhD dissertaion, Korea University, Seoul, Korea.
  23. Lee, H., Han, J., and Yun, Z. (2009). Biological Nitrogen and Phosphorus Removal in UCT-Type MBR Process, Water Science and Technology, 59(11), pp. 2093-2099. https://doi.org/10.2166/wst.2009.242
  24. Lee, H., Han, J., and Yun, Z. (2011). Evaluation of COD Utilization for Biological Nutrient Removal with dPAO in SBBR-MSBR System, Journal of Korean Society on Water Environment, 27(5), pp. 646-653. [Korean Literature]
  25. Liu, B. B., Zhang, F., Feng, X. X., Liu, Y. D., Yan, X., Zhang, X. J., Wang, L. H., and Zhao, . P. (2006). Thauera and Azoarcus as Functionally Important Genera in a Denitrifying Quinoline-Removal Bioreactor as Revealed by Microbial Community Structure Comparison, FEMS Microbiology Ecology, 55(2), pp. 274-286. https://doi.org/10.1111/j.1574-6941.2005.00033.x
  26. Liu, W. T., Nielsen, A. T., Wu, J. H., Tsai, C. S., Matsuo, Y., and Molin, S. (2001). In Situ Identification of Polyphosphate- and Polyhydroxyalkanoate-Accumulating Traits for Microbial Populations in a Biological Phosphorus Removal Process, Environmental Microbiology, 3(2), pp. 110-122. https://doi.org/10.1046/j.1462-2920.2001.00164.x
  27. Lopez-Vazquez, C. M., Oehmen, A., Hooijmans, C. M., Brdjanovic, D., Gijzen, H. J., Yuan, Z. G., and van Loosdrecht, M. C. M. (2009). Modeling the PAO-GAO Competition: Effects of Carbon Source, pH and Temperature, Water Research, 43(2), pp. 450-462. https://doi.org/10.1016/j.watres.2008.10.032
  28. Madigan, M. T., Martinko, J. M., and Brock, T. D. (2006). Brock Biology of Microorganisms, Pearson Prentice Hall, Upper Saddle River, NJ.
  29. Maszenan, A. M., Seviour, R. J., Patel, B. K., Schumann, P., Burghardt, J., Tokiwa, Y., and Stratton, H. M. (2000). Three Isolates of Novel Polyphosphate-Accumulating Gram-Positive Cocci, Obtained from Activated Sludge, Belong to a New Genus, Tetrasphaera gen. nov., and Description of Two New Species, Tetrasphaera Japonica sp. nov. and Tetrasphaera Australiensis sp. nov, International Journal of Systematic and Evolutionary Microbiology, 50(2), pp. 593-603. https://doi.org/10.1099/00207713-50-2-593
  30. Menes, R. J., Viera, C. E., Farias, M. E., and Seufferheld, M. J. (2011). Halomonas Vilamensis sp nov., Isolated from High- Altitude Andean Lakes, International Journal of Systematic and Evolutionary Microbiology, 61, pp. 1211-1217. https://doi.org/10.1099/ijs.0.023150-0
  31. Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K., and Kamagata Y. (1995). Microlunatus Phosphovorus Gen-Nov, Sp-Nov, a New Gram-Positive Polyphosphate- Accumulating Bacterium Isolated from Activated- Sludge, International Journal of Systematic and Evolutionary Microbiology, 45(1), pp. 17-22.
  32. Nguyen, H. T., Nielsen, J. L., Nielsen, P. H. (2012) Candidatus Halomonas phosphatis, a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants, Environmental Microbiology, 14, pp. 2826-2837. https://doi.org/10.1111/j.1462-2920.2012.02826.x
  33. Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z. G., Keller, J., Blackall, L. L. and Reis, M. A. M. (2007). Advances in Enhanced Biological Phosphorus Removal: From Micro to Macro Scale, Water Research, 41(11), pp. 2271-2300. https://doi.org/10.1016/j.watres.2007.02.030
  34. Oehmen, A., Lopez-Vazquez, C. M., Carvalho, G., Reis, M. A. M., and van Loosdrecht, M. C. M. (2010). Modelling the Population Dynamics and Metabolic Diversity of Organisms Relevant in Anaerobic/Anoxic/Aerobic Enhanced Biological Phosphorus Removal Processes, Water Research, 44(15), pp. 4473-4486. https://doi.org/10.1016/j.watres.2010.06.017
  35. Park, H. D. and Noguera, D. R. (2008). Nitrospira Community Composition in Nitrifying Reactors Operated With Two Different Dissolved Oxygen Levels, Journal of Microbiology and Biotechnology, 18(8), pp. 1470-1474.
  36. Peterson, S. B., Warnecke, F., Madejska, J., McMahon, K. D., and Hugenholtz, P. (2008). Environmental Distribution and Population Biology of Candidatus Accumulibacter, a Primary Agent of Biological Phosphorus Removal, Environmental Microbiology, 10(10), pp. 2692-2703. https://doi.org/10.1111/j.1462-2920.2008.01690.x
  37. Santos, M. M., Lemos, P. C., Reis, M. A. M., and Santos, H. (1999). Glucose Metabolism and Kinetics of Phosphorus Removal by the Fermentative Bacterium Microlunatus Phosphovorus, Applied and Environmental Microbiology, 65(9), pp. 3920-3928.
  38. Seviour, R. J., Mino, T., and Onuki, M. (2003). The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems, FEMS Microbiology Reviews, 27(1), pp. 99-127. https://doi.org/10.1016/S0168-6445(03)00021-4
  39. Stante, L., Cellamare, C. M., Malaspina, F., Bortone, G., and Tilche, A. (1997). Biological Phosphorus Removal by Pure Culture of Lampropedia spp, Water Research, 31(6), pp. 1317-1324. https://doi.org/10.1016/S0043-1354(96)00351-X
  40. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. H. (1994). Development of an rRNA-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and Its Application for In Situ Monitoring in Activated Sludge, Applied and Environmental Microbiology, 60(3), pp. 792-800.
  41. Weng, C. N. and Molof, A. H. (1974). Nitrification in the Biological Fixed Film Rotating Disk System, Journal of Water Pollution Control Federation, 46, pp. 1674-1685.
  42. Wong, M. T., Mino, T., Seviour, R. J., Onuki, M., and Liu, W. T. (2005). In Situ Identification and Characterization of the Microbial Community Structure of Full-Scale Enhanced Biological Phosphorous Removal Plants in Japan, Water Research, 39(13), pp. 2901-2914. https://doi.org/10.1016/j.watres.2005.05.015
  43. Zeng, R. J., Saunders, A. M., Yuan, Z., Blackall, L. L., and Keller, J. (2003). Identification and Comparison of Aerobic and Denitrifying Polyphosphate-Accumulating Organisms, Biotechnology and Bioengineering, 83(2), pp. 140-148. https://doi.org/10.1002/bit.10652
  44. Zhang, Y. B., Xing, Y. B., Jing, Y. W., and Quan X. (2010). Treatment of Wastewater with Low Carbon Source Using Phosphorus Under Anaerobic-Anoxic Conditions Denitrifying, Huan Jing Ke Xue, 31(10), pp. 2360-2364.
  45. Zilles, J. L., Peccia, J., and Noguera, D. R. (2002). Microbiology of Enhanced Biological Phosphorus Removal in Aerated-Anoxic Orbal Processes, Water Environment Research, 74(5), pp. 428-436. https://doi.org/10.2175/106143002X140224