과제정보
연구 과제 주관 기관 : 한국연구재단
참고문헌
- Ahn, J., Daidou, T., Tsuneda, S., and Hirata, A. (2002). Transformation of Phosphorus and Relevant Intracellular Compounds by a Phosphorus-Accumulating Enrichment Culture in the Presence of Both the Electron Acceptor and Electron Donor, Biotechnology and Bioengineering, 79(1), pp. 83-93. https://doi.org/10.1002/bit.10292
- Ahn, J., Schroeder, S., Beer, M., McIlroy, S., Bayly, R. C., May, J. W., Vasiliadis, G., and Seviour, R. J. (2007). Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor, Applied Environmental Microbiology, 73(7), pp. 2257-2270. https://doi.org/10.1128/AEM.02080-06
- American Public Health Association, American Water Works Association, Water Environment Federation (APHA, AWWA and WEF). (2005). Standard Methods for the Examination of Water and Wastewater, 21st Eds., Washington DC, USA.
- Bao, L. L., Li, D., Li, X. K., Huang, R. X., Zhang, J., Lv, Y., and Xia, G. Q. (2007). Phosphorus Accumulation by Bacteria Isolated from a Continuous-Flow Two-Sludge System, Journal of Environmental Science, 19(4), pp. 391-395. https://doi.org/10.1016/S1001-0742(07)60065-5
- Beer, M., Stratton, H. M., Griffiths, P. C., and Seviour, R. J. (2006). Which Are the Polyphosphate Accumulating Organisms in Full-Scale Activated Sludge Enhanced Biological Phosphate Removal Systems in Australia?, Journal of Applied Microbiology, 100(2), pp. 233-243. https://doi.org/10.1111/j.1365-2672.2005.02784.x
- Bond, P. L., Hugenholtz, P., Keller, J., and Blackall, L. L. (1995). Bacterial Community Structures of Phosphate-Removing and Non-Phosphate-Removing Activated Sludges from Sequencing Batch Reactors, Applied and Environmental Microbiology, 61(5), pp. 1910-1916.
- Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Mino, T., Alaerts, G. J., and Heijnen, J. J. (1998). Effect of Polyphosphate Limitation on the Anaerobic Metabolism of Phosphorus-Accumulating Microorganisms, Applied Microbiology and Biotechnology, 50(2), pp. 273-276. https://doi.org/10.1007/s002530051289
- Carvalho, G., Lemos, P. C., Oehmen, A., and Reis, M. A. (2007). Denitrifying Phosphorus Removal: Linking the Process Performance with the Microbial Community Structure, Water Research, 41(19), pp. 4383-4396. https://doi.org/10.1016/j.watres.2007.06.065
- Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L. L. (2000). Identification of Polyphosphate-Accumulating Organisms and Design of 16S rRNA-Directed Probes for Their Detection and Quantitation, Applied and Environmental Microbiology, 66(3), pp. 1175- 1182. https://doi.org/10.1128/AEM.66.3.1175-1182.2000
- Datta, T. and Goel, R. (2010). Evidence and Long-Term Feasibility of Enhanced Biological Phosphorus Removal in Oxidation-Ditch Type of Aerated-Anoxic Activated Sludge Systems, Journal of Environmental Engineering, 136(11), pp. 1237-1247. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000259
- Eschenhagen, M., Schuppler, M., and Roske, I. (2003). Molecular Characterization of the Microbial Community Structure in Two Activated Sludge Systems for the Advanced Treatment of Domestic Effluents, Water Research, 37(13), pp. 3224-3232. https://doi.org/10.1016/S0043-1354(03)00136-2
- Fuhs, G. W. and Chen, M. (1975). Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater, Microbial Ecology, 2(2), pp. 119-138. https://doi.org/10.1007/BF02010434
- Glockner, J., Kube, M., Shrestha, P. M., Weber, M., Glockner, F. O., Reinhardt, R., and Liesack, W. (2010). Phylogenetic Diversity and Metagenomics of Candidate Division OP3, Environmental Microbiology, 12(5), pp. 1218-1229. https://doi.org/10.1111/j.1462-2920.2010.02164.x
- Goel, R. K., Sanhueza, P. and Noguera, D. R. (2005). Evidence of Dechloromonas sp. Participating in Enhanced Biological Phosphorus Removal (EBPR) in a Bench-Scale Aerated-Anoxic Reactor, Water Environment Federation, Washington D.C., pp. 3864-3871.
- He, S., Gall, D. L. and McMahon, K. D. (2007). "Candidatus Accumulibacter" Population Structure in Enhanced Biological Phosphorus Removal Sludges as Revealed by Polyphosphate Kinase Genes, Applied and Environmental Microbiology, 73(18), pp. 5865-5874. https://doi.org/10.1128/AEM.01207-07
- He, S. M., Bishop, F. I.. and McMahon, K. D. (2010). Bacterial Community and "Candidatus Accumulibacter" Population Dynamics in Laboratory-Scale Enhanced Biological Phosphorus Removal Reactors, Applied and Environmental Microbiology, 76(16), pp. 5479-5487. https://doi.org/10.1128/AEM.00370-10
- Kim, J. M., Lee, H. J., Kim, S. Y., Song, J. J., Park, W., and Jeon, C. O. (2010). Analysis of the Fine-Scale Population Structure of "Candidatus Accumulibacter Phosphatis" in Enhanced Biological Phosphorus Removal Sludge, Using Fluorescence in situ Hybridization and Flow Cytometric Sorting, Applied and Environmental Microbiology, 76(12), pp. 3825-3835. https://doi.org/10.1128/AEM.00260-10
- Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., and Chun, J. (2012). Introducing EzTaxon-e: a Prokaryotic 16S rRNA Gene Sequence Database with Phylotypes that Represent Uncultured Species, International Journal of Systematic and Evolutionary Microbiology, 62, pp. 716-721. https://doi.org/10.1099/ijs.0.038075-0
- Kong, Y. H., Nielsen, J. L., and Nielsen, P. H. (2004). Microautoradiographic Study of Rhodocyclus-Related Polyphosphate- Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants, Applied and Environmental Microbiology, 70(9), pp. 5383-5390. https://doi.org/10.1128/AEM.70.9.5383-5390.2004
- Kong, Y. H., Nielsen, J. L., and Nielsen, P. H. (2005). Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate- Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants, Applied and Environmental Microbiology, 71(7), pp. 4076-4085. https://doi.org/10.1128/AEM.71.7.4076-4085.2005
- Kong, Y. H., Xia, Y., Nielsen, J. L., and Nielsen, P. H. (2007). Structure and Function of the Microbial Community in a Full-Scale Enhanced Biological Phosphorus Removal Plant, Microbiology-The Society for General Microbiology, 153, pp. 4061-4073.
- Lee, H. (2013). Biochemical and Microbial Characteristics of Denitrifying Phosphorus Accumulating Organism and its Application in 4 Stage Anoxic Membrane Bioreactor, PhD dissertaion, Korea University, Seoul, Korea.
- Lee, H., Han, J., and Yun, Z. (2009). Biological Nitrogen and Phosphorus Removal in UCT-Type MBR Process, Water Science and Technology, 59(11), pp. 2093-2099. https://doi.org/10.2166/wst.2009.242
- Lee, H., Han, J., and Yun, Z. (2011). Evaluation of COD Utilization for Biological Nutrient Removal with dPAO in SBBR-MSBR System, Journal of Korean Society on Water Environment, 27(5), pp. 646-653. [Korean Literature]
- Liu, B. B., Zhang, F., Feng, X. X., Liu, Y. D., Yan, X., Zhang, X. J., Wang, L. H., and Zhao, . P. (2006). Thauera and Azoarcus as Functionally Important Genera in a Denitrifying Quinoline-Removal Bioreactor as Revealed by Microbial Community Structure Comparison, FEMS Microbiology Ecology, 55(2), pp. 274-286. https://doi.org/10.1111/j.1574-6941.2005.00033.x
- Liu, W. T., Nielsen, A. T., Wu, J. H., Tsai, C. S., Matsuo, Y., and Molin, S. (2001). In Situ Identification of Polyphosphate- and Polyhydroxyalkanoate-Accumulating Traits for Microbial Populations in a Biological Phosphorus Removal Process, Environmental Microbiology, 3(2), pp. 110-122. https://doi.org/10.1046/j.1462-2920.2001.00164.x
- Lopez-Vazquez, C. M., Oehmen, A., Hooijmans, C. M., Brdjanovic, D., Gijzen, H. J., Yuan, Z. G., and van Loosdrecht, M. C. M. (2009). Modeling the PAO-GAO Competition: Effects of Carbon Source, pH and Temperature, Water Research, 43(2), pp. 450-462. https://doi.org/10.1016/j.watres.2008.10.032
- Madigan, M. T., Martinko, J. M., and Brock, T. D. (2006). Brock Biology of Microorganisms, Pearson Prentice Hall, Upper Saddle River, NJ.
- Maszenan, A. M., Seviour, R. J., Patel, B. K., Schumann, P., Burghardt, J., Tokiwa, Y., and Stratton, H. M. (2000). Three Isolates of Novel Polyphosphate-Accumulating Gram-Positive Cocci, Obtained from Activated Sludge, Belong to a New Genus, Tetrasphaera gen. nov., and Description of Two New Species, Tetrasphaera Japonica sp. nov. and Tetrasphaera Australiensis sp. nov, International Journal of Systematic and Evolutionary Microbiology, 50(2), pp. 593-603. https://doi.org/10.1099/00207713-50-2-593
- Menes, R. J., Viera, C. E., Farias, M. E., and Seufferheld, M. J. (2011). Halomonas Vilamensis sp nov., Isolated from High- Altitude Andean Lakes, International Journal of Systematic and Evolutionary Microbiology, 61, pp. 1211-1217. https://doi.org/10.1099/ijs.0.023150-0
- Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K., and Kamagata Y. (1995). Microlunatus Phosphovorus Gen-Nov, Sp-Nov, a New Gram-Positive Polyphosphate- Accumulating Bacterium Isolated from Activated- Sludge, International Journal of Systematic and Evolutionary Microbiology, 45(1), pp. 17-22.
- Nguyen, H. T., Nielsen, J. L., Nielsen, P. H. (2012) Candidatus Halomonas phosphatis, a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants, Environmental Microbiology, 14, pp. 2826-2837. https://doi.org/10.1111/j.1462-2920.2012.02826.x
- Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z. G., Keller, J., Blackall, L. L. and Reis, M. A. M. (2007). Advances in Enhanced Biological Phosphorus Removal: From Micro to Macro Scale, Water Research, 41(11), pp. 2271-2300. https://doi.org/10.1016/j.watres.2007.02.030
- Oehmen, A., Lopez-Vazquez, C. M., Carvalho, G., Reis, M. A. M., and van Loosdrecht, M. C. M. (2010). Modelling the Population Dynamics and Metabolic Diversity of Organisms Relevant in Anaerobic/Anoxic/Aerobic Enhanced Biological Phosphorus Removal Processes, Water Research, 44(15), pp. 4473-4486. https://doi.org/10.1016/j.watres.2010.06.017
- Park, H. D. and Noguera, D. R. (2008). Nitrospira Community Composition in Nitrifying Reactors Operated With Two Different Dissolved Oxygen Levels, Journal of Microbiology and Biotechnology, 18(8), pp. 1470-1474.
- Peterson, S. B., Warnecke, F., Madejska, J., McMahon, K. D., and Hugenholtz, P. (2008). Environmental Distribution and Population Biology of Candidatus Accumulibacter, a Primary Agent of Biological Phosphorus Removal, Environmental Microbiology, 10(10), pp. 2692-2703. https://doi.org/10.1111/j.1462-2920.2008.01690.x
- Santos, M. M., Lemos, P. C., Reis, M. A. M., and Santos, H. (1999). Glucose Metabolism and Kinetics of Phosphorus Removal by the Fermentative Bacterium Microlunatus Phosphovorus, Applied and Environmental Microbiology, 65(9), pp. 3920-3928.
- Seviour, R. J., Mino, T., and Onuki, M. (2003). The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems, FEMS Microbiology Reviews, 27(1), pp. 99-127. https://doi.org/10.1016/S0168-6445(03)00021-4
- Stante, L., Cellamare, C. M., Malaspina, F., Bortone, G., and Tilche, A. (1997). Biological Phosphorus Removal by Pure Culture of Lampropedia spp, Water Research, 31(6), pp. 1317-1324. https://doi.org/10.1016/S0043-1354(96)00351-X
- Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. H. (1994). Development of an rRNA-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and Its Application for In Situ Monitoring in Activated Sludge, Applied and Environmental Microbiology, 60(3), pp. 792-800.
- Weng, C. N. and Molof, A. H. (1974). Nitrification in the Biological Fixed Film Rotating Disk System, Journal of Water Pollution Control Federation, 46, pp. 1674-1685.
- Wong, M. T., Mino, T., Seviour, R. J., Onuki, M., and Liu, W. T. (2005). In Situ Identification and Characterization of the Microbial Community Structure of Full-Scale Enhanced Biological Phosphorous Removal Plants in Japan, Water Research, 39(13), pp. 2901-2914. https://doi.org/10.1016/j.watres.2005.05.015
- Zeng, R. J., Saunders, A. M., Yuan, Z., Blackall, L. L., and Keller, J. (2003). Identification and Comparison of Aerobic and Denitrifying Polyphosphate-Accumulating Organisms, Biotechnology and Bioengineering, 83(2), pp. 140-148. https://doi.org/10.1002/bit.10652
- Zhang, Y. B., Xing, Y. B., Jing, Y. W., and Quan X. (2010). Treatment of Wastewater with Low Carbon Source Using Phosphorus Under Anaerobic-Anoxic Conditions Denitrifying, Huan Jing Ke Xue, 31(10), pp. 2360-2364.
- Zilles, J. L., Peccia, J., and Noguera, D. R. (2002). Microbiology of Enhanced Biological Phosphorus Removal in Aerated-Anoxic Orbal Processes, Water Environment Research, 74(5), pp. 428-436. https://doi.org/10.2175/106143002X140224