DOI QR코드

DOI QR Code

Evaluation of Mechanical Properties and Damage Sensing of CNT-Polypropylene Composites by Electro-Micromechanical Techniques

CNT-폴리프로필렌 복합재료의 기계적 물성평가 및 전기 미세평가법을 이용한 손상감지

  • 왕작가 (경상대학교 나노.신소재공학부 대학원) ;
  • 권동준 (경상대학교 나노.신소재공학부 대학원) ;
  • 구가영 (경상대학교 나노.신소재공학부 대학원) ;
  • 김학수 (현대자동차, 고분자재료연구팀) ;
  • 김대식 (현대자동차, 고분자재료연구팀) ;
  • 이춘수 (현대자동차, 고분자재료연구팀) ;
  • 박종만 (경상대학교 나노.신소재공학부, 공학연구원)
  • Received : 2012.09.11
  • Accepted : 2012.12.15
  • Published : 2013.02.28

Abstract

CNT-polypropylene (PP) composites were compounded by solvent dispersion method with uniform dispersion by using twin screw extruder. Damage sensing effects based on conductive carbon nanotubes (CNT) were evaluated to monitor the internal damage of CNT-PP composites using electrical resistance measurement. Mechanical and interfacial properties of CNT-PP composites were investigated and compared with neat PP. The mechanical properties of PP matrix were improved after adding CNT, because of the reinforcing effect of CNT fillers. In order to monitor the internal damage of CNT-PP composite, the change in electrical resistance of the composites was measured under fatigue loading and bending tests. CNT fillers exhibited good sensing under electrical resistance measurements. It is shown that CNT-PP composites with low CNT contents allow identifying critical cyclic loading, which are found to be accompanied with the internal failure.

용액 분산법을 이용하여 CNT를 균질하게 분산시켰고, CNT-폴리프로필렌 복합재료 제조를 위해 압출기와 사출기를 사용하였다. CNT 고유의 전도성을 기반으로 CNT-PP 복합재료의 내부 손상을 감지하기 위해 전기저항 측정법을 이용하였다. CNT-PP의 기계적 및 계면 물성을 확인하고 일반 PP와 비교하였다. CNT의 강화 효과로 인하여 CNT를 함유함으로서, PP 기지의 기계적 물성은 더 증가되는 경향을 확인하였다. CNT-PP 복합재료의 내부 손상을 평가하기 위해 파괴 및 굴곡실험을 진행하며, 동시에 발생되는 전기저항 변화도를 감지하여 미세손상을 평가하였다. CNT 강화제의 첨가는 좋은감지능을 보여주었다. 낮은 CNT 함유율임에도 CNT-PP 복합재료의 감지가 가능했으며, 반복 하중 실험 중 최대 임계 응력을 확인하여, 내부에 발생된 미세 파괴를 찾아 낼 수 있었다.

Keywords

References

  1. Mi, Y., Chen, X., and Guo, Q.,"Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology," Journal of Applied Polymer Science, Vol. 64, No. 7 1997, pp. 1267-1273. https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1267::AID-APP4>3.0.CO;2-H
  2. Lo'pez Manchado, M.A., Valentini, L., Biagiotti, J., and Kenny, J.M.,"Thermal and mechanical properties of singlewalled carbon nanotubes-polypropylene composites prepared by melt processing,"Carbon, Vol. 43, No. 7, 2005, pp. 1499-1505. https://doi.org/10.1016/j.carbon.2005.01.031
  3. Naik, N.K., and Meduri, S.,"Polymer matrix composites subjected to low velocity impact : effect of laminate configuration,"Composites Science and Technology, Vol. 61, No. 10, 2001, pp. 1429-1436. https://doi.org/10.1016/S0266-3538(01)00044-6
  4. Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K., "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review," Composites: Part A, Vol. 41, No. 10, 2010, pp. 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  5. Valentini, L., Biagiotti, J., Kenny, J.M., and Santucci, S.,"Morphological characterization of single-wall carbon nanotube/polypropylene composites," Composites Science and Technology, Vol. 63, 2003, pp. 1149-1153. https://doi.org/10.1016/S0266-3538(03)00036-8
  6. Gao, L., Thostenson, E.T., Zhang, Z., and Chou, T.W., "Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites," Carbon, Vol. 47, No. 5, 2009, pp. 1381-1388. https://doi.org/10.1016/j.carbon.2009.01.030
  7. Wang, X.J., and Chung, D.D.L.,"Real-time monitoring of fatigue damage and dynamic strain in carbon fiber polymermatrix composite by electrical resistance measurement," Smart Materials and Structures, Vol. 6, No. 4, 1997, pp. 504-508. https://doi.org/10.1088/0964-1726/6/4/017
  8. Boger, L., Wichmann, M.H.G., Meyer, L.O., and Schulte K., "Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix," Composites Science and Technology, Vol. 68, No. 7-8, 2008, pp. 1886-1894. https://doi.org/10.1016/j.compscitech.2008.01.001
  9. Kwon, D.J., Wang, Z.J., Gu, G.Y., Um, M.G., and Park, J.M., "Inherent And Interfacial Evaluation Of Fibers/Epoxy Composites By Micromechanical Tests At Cryogenic Temperature," Journal of the Korean Society for Composite Materials, Vol. 24, No. 4, 2011, pp. 11-16. https://doi.org/10.7234/kscm.2011.24.4.011

Cited by

  1. A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.223
  2. Evaluation of Fiber Arrangement Condition of CF/PP Composites Using Electrical Resistance Measurement and Wettability vol.17, pp.1, 2016, https://doi.org/10.17702/jai.2016.17.1.15
  3. A Study on Processing-Structure-Property Relationships of Extruded Carbon Nanomaterial-Polypropylene Composite Films vol.26, pp.4, 2013, https://doi.org/10.7234/composres.2013.26.4.254
  4. An Improved Manufacturing Method of p-Dicyclopentadiene (DCPD) using Tungsten Type Catalyst in Air Condition vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.216
  5. Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating vol.27, pp.3, 2014, https://doi.org/10.7234/composres.2014.27.3.109
  6. A Study on Improvement of Thermal and Adhesion Properties of Stone/Wood Composites for Stone Bed using CNT-epoxy Adhesive vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.276
  7. Investigation on wear behaviors and worn surface morphology of surface treated palmyra fruit fiber/polyester composites to appraise the effects of fiber surface treatments vol.39, pp.6, 2018, https://doi.org/10.1002/pc.24163
  8. Numerical Simulation of High Velocity Impact of Circular Composite Laminates vol.18, pp.2, 2017, https://doi.org/10.5139/ijass.2017.18.2.236