J. Korean Math. Soc. ${\bf 50}$ (2013), No. 2, pp. 411–423 http://dx.doi.org/10.4134/JKMS.2013.50.2.411

ELLIPTIC EQUATIONS WITH COMPACTLY SUPPORTED SOLUTIONS

Orazio Arena and Cristina Giannotti

ABSTRACT. For any $p \in (1,2)$ and arbitrary $f \in L^p(\mathbb{R}^2)$ with compact support, it is proved that there exists a pair (L, u), with L second order uniformly elliptic operator and $u \in W_0^{2,p}(\mathbb{R}^2)$ such that Lu = f a.e. in \mathbb{R}^2 .

1. Introduction

Let L be a second order uniformly elliptic operator with bounded measurable coefficients in \mathbb{R}^2 of the form

(1.1)
$$L := a^{11}\partial_{xx} + 2a^{12}\partial_{xy} + a^{22}\partial_{yy}$$

When $u \in W^{2,2}(\mathbb{R}^2)$ is a solution of the equation Lu = f for a compactly supported function f, in general, one cannot expect that u also has compact support.

On the other hand, for the case when p is small enough so that the a priori bounds of K. Astala, T. Iwaniec, G. Martin [1] do not hold, Buonocore and Manselli proved in [3] that there exists an operator L (of the above form and with first order terms) and a non trivial $u \in W^{2,p}(\mathbb{R}^2)$ with compact support satisfying the equation Lu = 0 a.e. (see [3]). A similar example in \mathbb{R}^3 has been constructed in [4].

In this paper, we consider the corresponding question on compactly supported solutions for the non-homogeneous equation Lu = f and prove that:

For any given $p \in (1,2)$ and $f \in L^p(\mathbb{R}^2)$ with compact support, there exist an operator L of the form (1.1) and a function $u \in W_0^{2,p}(\mathbb{R}^2)$ satisfying Lu = f a.e. in \mathbb{R}^2 .

The proof basically follows arguments in [6]. In that paper, the authors considered the homogeneous equation Lu = 0 and proved that, given two arbitrary functions $f^{(0)}$ and $f^{(1)}$ on the boundary ∂D of the unit disk $D \subset \mathbb{R}^2$, there exists a function u and a second order uniformly elliptic operator L of the form (1.1) so that Lu = 0 in D, $u|_{\partial D} = f^{(0)}$ and $\frac{\partial u}{\partial n}|_{\partial D} = f^{(1)}$.

Key words and phrases. second order elliptic equations, compactly supported solutions.

411

C2013 The Korean Mathematical Society

Received May 27, 2012; Revised September 30, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 35B60; Secondary 35J15.

Here, the construction starts by taking a function u satisfying $\Delta u = f$ a.e. in the unit disk D of the form $u = w + \tilde{u}$, where w is the solution to the Dirichlet problem $\Delta w = f$ in D, w = 0 on ∂D and \tilde{u} is the sum of a series of Green functions with poles in a countable subset \mathcal{N} of D with no accumulation points in D. Such a function u assumes the boundary conditions $u|_{\partial D} = 0$, $\frac{\partial u}{\partial n}|_{\partial D} = 0$ in a suitably generalized sense and its existence follows from a result in [5]. After this, following the method used in [6], we modify the function uand the operator Δ in suitably chosen disks centered at the points of \mathcal{N} and we obtain an elliptic operator L of the form (1.1) and a function $u' \in W^{2,p}(D)$ satisfying all required properties.

The paper is organized as follows: In §2, we recall notations and results of [6] and determine the previously described function $u = w + \tilde{u}$ (Lemma 2.2). In §3 we outline the modifying procedure for u and Δ and in §4, we prove the main result.

2. Notations and preliminary results

In what follows, we identify \mathbb{R}^2 with \mathbb{C} and, for any r > 0, we denote by $D(\mathfrak{a}, r)$ the open disk centered at $\mathfrak{a} \in \mathbb{C}$ with radius r. The unit disk D(0, 1) will be simply denoted by D.

 \mathcal{L}_{α} is the family of linear second order uniformly elliptic operators with bounded measurable coefficients in D of the form (1.1) with lower ellipticity constant $\alpha > 0$ and upper ellipticity constant $1/\alpha$.

Given $W^{2,p}(D)$, the Sobolev space of functions in $L^p(D)$ with second derivatives in $L^p(D)$, p > 1, for any $v \in W^{2,p}(D)$, we denote by $v|_{\partial D}$ and $\frac{\partial v}{\partial n}|_{\partial D}$ the traces on ∂D of v and of $\frac{\partial v}{\partial r}$, respectively. We also denote by $W_0^{2,p}(D)$ the closure of $C_0^{\infty}(D)$ in $W^{2,p}(D)$, i.e., the class of $v \in W^{2,p}(D)$ such that $v|_{\partial D} = 0$ and $\frac{\partial v}{\partial n}|_{\partial D} = 0$.

Let us recall some notations and definitions from [6].

For any real number $\gamma \geq 0$, we denote by $\mathbb{A}^{(\gamma)}$ the Banach space of real-valued functions, defined on ∂D , of the form

(2.1)
$$f(e^{i\theta}) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos n\theta + b_n \sin n\theta\right)$$

with Fourier coefficients a_n , b_n such that

$$(2.2) \qquad \qquad \{n^{\gamma}a_n\}, \ \{n^{\gamma}b_n\} \in \ell^1$$

and norm defined by $||f||_{\mathbb{A}^{(\gamma)}} = ||\{n^{\gamma}a_n\}||_{\ell^1} + ||\{n^{\gamma}b_n\}||_{\ell^1}$.

Also, for any $\gamma \ge 0$, let σ be a fixed constant, $0 < \sigma < \frac{1}{2}$, depending on γ such that

(2.3)
$$\sum_{p=1}^{\infty} (2p+1)^{\gamma} \sigma^{2p} < 1$$

and let $\zeta_{2n,l}^{(j)}$ $(n \in \mathbb{N}, l = 0, \dots, 2n-1, j = 1, 2)$ be the 4*n*-th roots of σ^4 ordered as follows:

(2.4)
$$\zeta_{2n,\,l}^{(1)} = \sigma^{\frac{1}{n}} e^{-\frac{\pi}{n} l \, i}, \quad l = 0, \dots, 2n-1,$$

(2.5)
$$\zeta_{2n,l}^{(2)} = \sigma^{\frac{1}{n}} e^{-(-\frac{\pi}{2n} + \frac{\pi}{n}l)i}, \quad l = 0, \dots, 2n-1.$$

Let us denote by $\mathcal{N} := \{\mathfrak{a}_{\nu}\}_{\nu \geq 0}$ the sequence given by 0 and the points $\zeta_{2n,l}^{(j)}$ ordered in the following way:

$$\mathfrak{a}_0 = 0, \quad \mathfrak{a}_{\nu} = \zeta_{2n,\,l}^{(j)} \quad \text{if } \nu = 1 + 2(n-1)n + 2(j-1)n + l$$

for any $n \in \mathbb{N}$, $l = 0, \ldots, 2n - 1$, j = 1, 2. Notice that \mathcal{N} has no limit points in D.

We also set

(2.6)
$$m_{\nu} := \frac{1}{2} \min_{\mu \neq \nu} |\mathfrak{a}_{\mu} - \mathfrak{a}_{\nu}|$$

(indeed, one may alternatively consider constants $m_{\nu} := \epsilon \min_{\mu \neq \nu} |\mathfrak{a}_{\mu} - \mathfrak{a}_{\nu}|$ for any other fixed $\epsilon \in (0, \frac{1}{2}]$). Notice that as $1 + 2n(n-1) \leq \nu \leq 2n^2 + 2n$, for any fixed value of ν , the corresponding value of n satisfies the inequalities

(2.7)
$$\frac{-1+\sqrt{1+2\nu}}{2} \le n \le \frac{1+\sqrt{2\nu-1}}{2}.$$

Since $|\mathfrak{a}_{\nu}| = \sigma^{\frac{1}{n}}$, it follows that $m_{\nu} \geq \frac{\sigma^{\frac{1}{n+1}} - \sigma^{\frac{1}{n}}}{2} = \frac{1}{2}e^{\tilde{x}}\frac{\ln(1/\sigma)}{n(n+1)}$ for some $\tilde{x} \in (\frac{1}{n}\ln\sigma, \frac{1}{n+1}\ln\sigma)$ and hence

(2.8)
$$m_{\nu} \ge \frac{\sigma \ln(1/\sigma)}{2(n+1)^2} \ge \frac{2\sigma \ln(1/\sigma)}{(3+\sqrt{2\nu-1})^2} \ge \frac{C(\sigma)}{\nu}.$$

Notice that the set

$$D_o = D \setminus \bigcup_{\nu=0}^{\infty} \overline{D}(\mathfrak{a}_{\nu}, \frac{2}{3}m_{\nu})$$

is an open non-empty subset of D.

Let $G(z,\zeta)$ be the Green function for the Laplace operator in D with pole ζ :

$$G(z,\zeta) = -\frac{1}{2\pi} \ln \left| \frac{z-\zeta}{1-z\overline{\zeta}} \right|, \qquad z \neq \zeta.$$

The following result is proved in [5].

Fact 2.1. Let $\gamma > 0$ and σ be as above and $1 . Given <math>f^{(1)} \in \mathbb{A}^{(\gamma)}$, there exist $a_0 \in \mathbb{R}$, two sequences $\{\alpha_n\}, \{\beta_n\}$ and a constant K > 0 (depending on γ, p only) such that:

(a) $|a_0| + ||(\cdot)^{\gamma} \alpha . ||_{\ell^1} + ||(\cdot)^{\gamma} \beta . ||_{\ell^1} \le K \left\| f^{(1)} \right\|_{\mathbb{A}^{(\gamma)}};$

(b) The function

$$\widetilde{u}(z) = -\pi a_0 G(z, 0)$$

$$(2.9) \qquad -\pi \sum_{n=1}^{\infty} \frac{\alpha_n}{2\sigma n} \sum_{p=0}^{n-1} \left[G\left(z, \zeta_{2n, 2p}^{(1)}\right) - G\left(z, \zeta_{2n, 2p+1}^{(1)}\right) \right]$$

$$-\pi \sum_{n=1}^{\infty} \frac{\beta_n}{2\sigma n} \sum_{p=0}^{n-1} \left[G\left(z, \zeta_{2n, 2p}^{(2)}\right) - G\left(z, \zeta_{2n, 2p+1}^{(2)}\right) \right]$$

is harmonic in $D \setminus \mathcal{N}$; \widetilde{u} belongs to $L^p(D)$ with its first derivatives and

$$||\widetilde{u}||_{L^{p}(D)} + ||D\widetilde{u}||_{L^{p}(D)} \le K ||f^{(1)}||_{\mathbb{A}^{(\gamma)}};$$

(c) For $N \in \mathbb{N}$, the partial sums of \tilde{u} defined as

$$\widetilde{u}^{(N)}(z) = -\pi a_0 G(z,0) - \pi \sum_{n=1}^N \frac{\alpha_n}{2\sigma n} \sum_{p=0}^{n-1} \left[G\left(z, \zeta_{2n,2p}^{(1)}\right) - G\left(z, \zeta_{2n,2p+1}^{(1)}\right) \right]$$

$$(2.10) \qquad -\pi \sum_{n=1}^N \frac{\beta_n}{2\sigma n} \sum_{p=0}^{n-1} \left[G\left(z, \zeta_{2n,2p}^{(2)}\right) - G\left(z, \zeta_{2n,2p+1}^{(2)}\right) \right]$$

have the boundary properties:

- i) $\widetilde{u}^{(N)}$ is of class C^2 in a neighbourhood of ∂D , $\widetilde{u}^{(N)}|_{\partial D} = 0$, $\frac{\partial \widetilde{u}^{(N)}}{\partial n}\Big|_{\partial D} \in \mathbb{A}^{(\gamma)};$
- ii) $\widetilde{u}^{(N)}$ converges to \widetilde{u} uniformly on any compact subset of $D\setminus\mathcal{N}$ and

(2.11)
$$\left\| \frac{\partial \widetilde{u}^{(N)}}{\partial n} \right|_{\partial D} - f^{(1)} \right\|_{\mathbb{A}^{(\gamma)}} \to 0.$$

Now let $f \in L^{p}(\mathbb{R}^{2})$, p > 1, and denote by supp f the support of f, i.e., the complement of the greatest open set in which f = 0 a.e.. For the moment, assume that

$$supp f \subset \subset D_o = D \setminus \bigcup_{\nu=0}^{\infty} \overline{D}(\mathfrak{a}_{\nu}, \frac{2}{3}m_{\nu})$$

and let $w \in W^{2,p}(D)$ be the solution to the Dirichlet problem

(2.12)
$$\begin{cases} \Delta w = f \text{ in } D, \\ w = 0 \text{ on } \partial D. \end{cases}$$

Notice that w is harmonic in a neighbourhood of ∂D and hence $\frac{\partial w}{\partial n}\Big|_{\partial D}$ belongs to $\mathbb{A}^{(\gamma)}$ for all $\gamma \geq 0$. Thus, the following is an immediate consequence of Fact 2.1, applied with $f^{(1)} = -\frac{\partial w}{\partial n}\Big|_{\partial D}$.

Lemma 2.2. Let γ , σ , p, f, w be as before and \tilde{u} the function associated to $f^{(1)} := -\frac{\partial w}{\partial n}\Big|_{\partial D}$ as in Fact 2.1. Then

$$(2.13) u = w + \widetilde{u}$$

is in W^{2,p}_{loc}(D \ N) ∩ W^{1,p}(D) and Δu = f a.e. in D;
(b) The partial sums u^(N)(z) = w(z) + ũ^(N)(z) converge to u uniformly on compact subsets of D \ N, are harmonic in a neighbourhood of ∂D with $u^{(N)}\Big|_{\partial D} = 0, and$

(2.14)
$$\left\| \frac{\partial u^{(N)}}{\partial n} \right|_{\partial D} \right\|_{\mathbb{A}^{(\gamma)}} \to 0.$$

Let us write u in the form

(2.15)
$$u(z) = w(z) + \pi \sum_{\nu=0}^{\infty} \omega_{\nu} G(z, \mathfrak{a}_{\nu}),$$

where the coefficients ω_{ν} are: $\omega_0 = -a_0$,

$$\omega_{\nu} = \begin{cases} (-1)^{l+1} \frac{\alpha_n}{2n\sigma} & \text{if } \nu = 1 + 2(n-1)n + l, \\ \\ (-1)^{l+1} \frac{\beta_n}{2n\sigma} & \text{if } \nu = 1 + 2(n-1)n + 2n + l \end{cases}$$

and satisfy $\{\nu^{\frac{\gamma}{2}}\omega_{\nu}\} \in \ell^1$.

Moreover, one can write u as the sum $u = u_1 + u_2$, where

(2.16)
$$u_1(z) = -\frac{1}{2} \sum_{\nu=0}^{\infty} \omega_{\nu} \ln |z - \mathfrak{a}_{\nu}|,$$

and

(2.17)
$$u_2(z) = w + \frac{1}{2} \sum_{\nu=1}^{\infty} \omega_{\nu} \left(\ln |\mathfrak{a}_{\nu}| + \ln |z - \frac{1}{\overline{\mathfrak{a}}_{\nu}}| \right).$$

Given $\nu_0 \in \mathbb{N} \cup \{0\}$, let us define

(2.18)
$$l^{(\nu_0)}(z) := -\frac{1}{2}\omega_{\nu_0} \ln|z - \mathfrak{a}_{\nu_0}|$$

and

(2.19)
$$u_1^{(\nu_0)}(z) := u_1(z) - l^{(\nu_0)}(z) = -\frac{1}{2} \sum_{\nu \neq \nu_0} \omega_\nu \ln |z - \mathfrak{a}_\nu|.$$

The following lemma states some properties of these functions.

Lemma 2.3. Let $f \in L^p(D)$ with supp $f \subset \subset D_o$.

- a) u₁ is harmonic in D \ N and u₁^(ν₀) in (D \ N) ∪ {a_{ν₀}}; u₂ is harmonic in D \ supp f and Δu₂ = f a.e. in D.
 b) If γ > 2 ²/_p, then u₂ ∈ W^{2,p}(D).

c) Let $\nu_0 \in \mathbb{N} \cup \{0\}$ and m_{ν_0} be as in (2.6). Then there exists a positive constant A such that

(2.20)
$$\max_{D(\mathfrak{a}_{\nu_0}, m_{\nu_0}/2)} |D^2 u_2| \le \frac{A}{m_{\nu_0}^2} \Big(\sum_{\nu=1}^\infty |\omega_\nu| + ||f||_{L^p(D)} \Big).$$

Proof. It is sufficient to prove only (b) and (c). Clearly,

$$||w||_{W^{2,p}(D)} \le C ||f||_{L^{p}(D)}$$

for some constant C. Now take a point $z \in \overline{D}$ and observe that

$$\left|z - \frac{1}{\overline{\mathfrak{a}}_{\nu}}\right| \geq \frac{1}{|\mathfrak{a}_{\nu}|} - 1 = \frac{1 - |\mathfrak{a}_{\nu}|}{|\mathfrak{a}_{\nu}|}$$

Since $1 - |\mathfrak{a}_{\nu}| = 1 - \sigma^{\frac{1}{n}}$ for some $n \in \mathbb{N}$, we have that $1 - |\mathfrak{a}_{\nu}| = e^{\tilde{x}} \frac{1}{n} \ln \frac{1}{\sigma}$ for some \tilde{x} in the interval $(\frac{1}{n} \ln \sigma, 0)$ and hence, by (2.7),

$$1 - |\mathfrak{a}_{\nu}| \ge \frac{\sigma \ln 1/\sigma}{n} \ge \frac{\widetilde{K}}{\sqrt{\nu}},$$

where \widetilde{K} is a constant depending on γ . Then from (2.17), one has

$$\max_{D} |u_2 - w| \le C \sum_{\nu=1}^{\infty} |\omega_{\nu}| (\frac{1}{2} |\log \sigma| + |\log \widetilde{K}| + \frac{1}{2} \log \nu) < +\infty.$$

Moreover, it is not difficult to check that

$$\begin{split} \left\| D^{2}(u_{2} - w) \right\|_{L^{p}(D)} &\leq C \sum_{\nu=1}^{\infty} |\omega_{\nu}| \left\| |\cdot - \frac{1}{\overline{\mathfrak{a}}_{\nu}}|^{-2} \right\|_{L^{p}(D)} \\ &\leq C \sum_{\nu=1}^{\infty} |\omega_{\nu}| + C \sum_{\nu=N+1}^{\infty} \nu^{\gamma/2} |\omega_{\nu}| \left\| |\cdot - \frac{1}{\overline{\mathfrak{a}}_{\nu}}|^{\gamma-2} \right\|_{L^{p}(D(\frac{1}{\overline{\mathfrak{a}}_{\nu}}, 3))} \end{split}$$

where N is chosen sufficiently large such that $\frac{1}{|\overline{\mathfrak{a}}_{\nu}|} \leq 2$ for $\nu > N$. Since $2 + p(\gamma - 2) > 0$ and

$$\left\| |\cdot -\frac{1}{\overline{\mathfrak{a}}_{\nu}}|^{\gamma-2} \right\|_{L^{p}(D(\frac{1}{\overline{\mathfrak{a}}_{\nu}},3))} \leq (2\pi)^{1/p} \left(\frac{3^{2+p(\gamma-2))}}{2+p(\gamma-2))} \right)^{1/p} < +\infty,$$

(b) follows.

Let us prove (c). As $supp f \subset \subset D_o$ and

$$\left|D_z^2 G(z,\zeta)\right| \le \frac{C}{|z-\zeta|^2}$$

for some constant C, we get

$$\max_{D(\mathfrak{a}_{\nu_0}, m_{\nu_0}/2)} |D^2 w| \le \max_{D(\mathfrak{a}_{\nu_0}, m_{\nu_0}/2)} \left| \int_{D_o} D_z^2 G(z, \zeta) f(\zeta) \ d\zeta \right| \le \frac{C}{m_{\nu_0}^2} ||f||_{L^p(D)}.$$

Moreover,

$$\max_{D(\mathfrak{a}_{\nu_0}, m_{\nu_0})} |D^2(u_2 - w)| \le \frac{C}{m_{\nu_0}^2} \sum_{\nu=1}^{\infty} |\omega_\nu|$$

and the bound (2.20) follows.

3. Modifying u and Δ in neighbourhoods of $\mathfrak{a}_{\nu} \in \mathcal{N}$

From the results of the previous section, it turns out that we need to modify the function u and the operator Δ in neighbourhoods of the points $\mathfrak{a}_{\nu} \in \mathcal{N}$ in order to obtain a new function v and a new second order uniformly elliptic operator L of the form (1.1) with the following properties:

i) $v \in C^{1,1}(D \setminus \mathcal{N});$ ii) $v \in W_0^{2,p}(D);$ iii) Lv = f a.e. in D.

For a fixed $\nu_0 \in \mathbb{N} \cup \{0\}$, let

$$r_{\nu_0} = \lambda_{\nu_0} m_{\nu_0}$$

with m_{ν_0} as in (2.6) and λ_{ν_0} a constant in (0,1/3) to be fixed later. Of course, $\overline{D}(\mathfrak{a}_{\nu_0}, r_{\nu_0}) \subset D$ and $\overline{D}(\mathfrak{a}_{\nu_0}, 2r_{\nu_0}) \cap \overline{D}(\mathfrak{a}_{\nu}, 2r_{\nu}) = \emptyset$ if $\nu \neq \nu_0$.

To modify the function u inside the disk $D(\mathfrak{a}_{\nu_0}, r_{\nu_0})$, let us replace the term $l^{(\nu_0)}$ with a smoother function as suggested by the following lemma from [6].

Lemma 3.1. Let $\nu_0 \in \mathbb{N} \cup \{0\}$, $1 and consider the function in <math>D(\mathfrak{a}_{\nu_0}, r_{\nu_0})$ defined by

(3.1)
$$s^{(\nu_0)}(r) = H_0^{(\nu_0)} + H_1^{(\nu_0)} r^h, \quad r = |z - \mathfrak{a}_{\nu_0}|,$$

where

(3.2)
$$H_0^{(\nu_0)} = -\frac{\omega_{\nu_0}}{2} \ln r_{\nu_0} + \frac{\omega_{\nu_0}}{2h}, \qquad H_1^{(\nu_0)} = -\frac{\omega_{\nu_0}}{2h} r_{\nu_0}^{-h}.$$

Then

i)
$$s^{(\nu_0)}(r_{\nu_0}) = l^{(\nu_0)}(r_{\nu_0})$$
 and $\frac{\partial s^{(\nu_0)}}{\partial r}(r_{\nu_0}) = \frac{\partial l^{(\nu_0)}}{\partial r}(r_{\nu_0});$
ii) $s^{(\nu_0)}(|\cdot - \mathfrak{a}_{\nu_0}|)$ belongs to $W^{2,p}(D(\mathfrak{a}_{\nu_0}, r_{\nu_0}))$ and

(3.3)
$$||s^{(\nu_0)}||_{L^p(D(\mathfrak{a}_{\nu_0},r_{\nu_0}))} \le C|\omega_{\nu_0}|r_{\nu_0}^{2p}(1+|\ln r_{\nu_0}|),$$

(3.4)
$$||\Delta s^{(\nu_0)}||_{L^p(D(\mathfrak{a}_{\nu_0}, r_{\nu_0}))} = C'|\omega_{\nu_0}|r_{\nu_0}^{\frac{2}{p}-2},$$

where C and C' are constants, both depending only on p and on h.

For reader's convenience, we recall its short proof.

Proof. It is enough to prove the last two formulas. By means of (3.1) and (3.2), we have

$$||s^{(\nu_0)}||_{L^p(D(\mathfrak{a}_{\nu_0},r_{\nu_0}))} \leq |H_0^{(\nu_0)}| \pi^{1/p} r_{\nu_0}^{2/p} + |H_1^{(\nu_0)}| (2\pi)^{1/p} \left(\int_0^{r_{\nu_0}} r^{ph+1} dr\right)^{\frac{1}{p}}$$

$$= \pi^{1/p} \frac{|\omega_{\nu_0}|}{2} r_{\nu_0}^{2/p} (|\ln r_{\nu_0}| + \frac{1}{h} + \frac{2^{1/p}}{h(ph+2)^{1/p}})$$

$$\leq C |\omega_{\nu_0}| r_{\nu_0}^{2/p} (1 + |\ln r_{\nu_0}|).$$

Moreover, $\Delta s^{(\nu_0)} = (s^{(\nu_0)})_{rr} + \frac{(s^{(\nu_0)})_r}{r} = -\frac{h}{2}\omega_{\nu_0}r_{\nu_0}^{-h}r^{h-2}$ so that

$$\begin{split} ||\Delta s^{(\nu_0)}||_{L^p(D(\mathfrak{a}_{\nu_0}, r_{\nu_0}))} &= (2\pi)^{1/p} |\omega_{\nu_0}| r_{\nu_0}^{-h} \frac{h}{2} \left(\int_0^{r_{\nu_0}} r^{p(h-2)+1} dr \right)^{\frac{1}{p}} \\ &= \frac{(2\pi)^{1/p} |\omega_{\nu_0}| (h/2)}{(p(h-2)+2)^{1/p}} r_{\nu_0}^{\frac{2}{p}-2}. \end{split}$$

Then we have:

Lemma 3.2. Let p, h, ν_0 be as in the previous lemma. Set $\Omega = \sum_{\nu=0}^{\infty} |\omega_{\nu}| +$ $||f||_{L^p(D)}$ and

(3.5)
$$\lambda_{\nu_0} = \min\left\{\frac{1}{4}, \sqrt{\frac{(1-h)|\omega_{\nu_0}|}{4(4A+1)\Omega}}\right\},$$

where A is the constant in the estimate (2.20).

Consider the following function $v^{(\nu_0)}$ on $D(\mathfrak{a}_{\nu_0}, 2r_{\nu_0})$:

$$v^{(\nu_0)} = \begin{cases} s^{(\nu_0)}(|\cdot -\mathfrak{a}_{\nu_0}|) + u_1^{(\nu_0)} + u_2 & in \quad D(\mathfrak{a}_{\nu_0}, r_{\nu_0}), \\ u & in \quad D(\mathfrak{a}_{\nu_0}, 2r_{\nu_0}) \setminus D(\mathfrak{a}_{\nu_0}, r_{\nu_0}). \end{cases}$$

It turns out that:

- (a) $v^{(\nu_0)} \in C^{1,1}(D(\mathfrak{a}_{\nu_0}, 2r_{\nu_0}) \setminus \{\mathfrak{a}_{\nu_0}\});$ (b) $v^{(\nu_0)}$ is harmonic in $D(\mathfrak{a}_{\nu_0}, 2r_{\nu_0}) \setminus D(\mathfrak{a}_{\nu_0}, r_{\nu_0});$ (c) $v^{(\nu_0)} \in W^{2,p}(D(\mathfrak{a}_{\nu_0}, 2r_{\nu_0})).$

Moreover, $v^{(\nu_0)}$ satisfies a second order, uniformly elliptic equation $Lv^{(\nu_0)} = 0$ with bounded measurable coefficients in $D(\mathfrak{a}_{\nu_0}, 2r_{\nu_0})$ and lower ellipticity constant $\frac{1}{2}(1-h)$.

Proof. Statement (a) follows by Lemma 3.1(i) and from the fact that $v^{(\nu_0)}$ has second order derivatives bounded in every compact subset of $D(\mathfrak{a}_{\nu_0}, 2r_{\nu_0})$ $\{a_{\nu_0}\}$. Statement (b) is clear and in regard to (c), it is enough to use Lemma 3.1(ii).

As far as the last claim is concerned, by known facts (see e.g. [2], Ch. 6), one needs to verify the existence of a number $q \in (0, 1)$ such that

(3.6)
$$\left|\frac{(v^{(\nu_0)})_{z\overline{z}}}{(v^{(\nu_0)})_{zz}}\right| \le q \quad \text{in } D(\mathfrak{a}_{\nu_0}, r_{\nu_0}).$$

Let us prove that (3.6) holds true with q = h. Indeed, recalling that $u_1^{(\nu_0)}$ and u_2 are harmonic in $D(\mathfrak{a}_{\nu_0}, r_{\nu_0})$, one may write

$$\left|\frac{(v^{(\nu_0)})_{z\overline{z}}}{(v^{(\nu_0)})_{zz}}\right| = \left|\frac{(s^{(\nu_0)}(|\cdot -\mathfrak{a}_{\nu_0}|))_{z\overline{z}}}{(s^{(\nu_0)}(|\cdot -\mathfrak{a}_{\nu_0}|) + u_1^{(\nu_0)} + u_2)_{zz}}\right|.$$

On the other hand, by (3.1), (3.2) and using polar coordinates with origin \mathfrak{a}_{ν_0} ,

$$(s^{(\nu_0)}(|\cdot -\mathfrak{a}_{\nu_0}|))_{zz} = \frac{\omega_{\nu_0}}{4}(1-\frac{h}{2})\left(\frac{r}{r_{\nu_0}}\right)^h (z-\mathfrak{a}_{\nu_0})^{-2},$$
$$(s_{\nu_0}(|\cdot -\mathfrak{a}_{\nu_0}|))_{z\overline{z}} = -\frac{\omega_{\nu_0}}{8}h\left(\frac{r}{r_{\nu_0}}\right)^h r^{-2}.$$

Then by easy calculations,

$$\begin{aligned} \left| \frac{(v^{(\nu_0)})_{z\overline{z}}}{(v^{(\nu_0)})_{zz}} \right| &= \left| \frac{\omega_{\nu_0} h r^{-2} (z - \mathfrak{a}_{\nu_0})^2}{2\omega_{\nu_0} (1 - \frac{h}{2}) + 8(u_1^{(\nu_0)} + u_2)_{zz} \left(\frac{r}{r_{\nu_0}}\right)^{-h} (z - \mathfrak{a}_{\nu_0})^2} \right| \\ &= \frac{|\omega_{\nu_0}|h}{\left| \omega_{\nu_0} (2 - h) + 8(u_1^{(\nu_0)} + u_2)_{zz} \left(\frac{r}{r_{\nu_0}}\right)^{-h} (z - \mathfrak{a}_{\nu_0})^2 \right|}. \end{aligned}$$

Now, it is clear that

$$\left|8(u_1^{(\nu_0)}+u_2)_{zz}\left(\frac{r}{r_{\nu_0}}\right)^{-h}(z-\mathfrak{a}_{\nu_0})^2\right| \le 8r_{\nu_0}^2 \max_{\overline{D}(\mathfrak{a}_{\nu_0},r_{\nu_0})}\left|(u_1^{(\nu_0)}+u_2)_{zz}\right|.$$

Moreover, since for any $z \in \overline{D}(\mathfrak{a}_{\nu_0}, r_{\nu_0})$ and $\nu \neq \nu_0$,

$$|z - \mathfrak{a}_{\nu}| \ge |\mathfrak{a}_{\nu_0} - \mathfrak{a}_{\nu}| - |z - \mathfrak{a}_{\nu_0}| \ge m_{\nu_0} - r_{\nu_0} = (1 - \lambda_{\nu_0})m_{\nu_0},$$

we have

$$\left| \frac{\partial^2 u_1^{(\nu_0)}}{\partial z^2} \right| \le \frac{1}{4} \sum_{\nu \ne \nu_0} \frac{|\omega_\nu|}{|z - \mathfrak{a}_\nu|^2} \le \frac{1}{4} \frac{\Omega}{(1 - \lambda_{\nu_0})^2 m_{\nu_0}^2}$$

and, recalling the bound (2.20) and using (3.5), we get

$$8r_{\nu_0}^2 \max_{\overline{D}(\mathfrak{a}_{\nu_0}, r_{\nu_0})} \left| (u_1^{(\nu_0)} + u_2)_{zz} \right| \le 8r_{\nu_0}^2 \left\{ \frac{A\Omega}{m_{\nu_0}^2} + \frac{\Omega}{4(1 - \lambda_{\nu_0})^2 m_{\nu_0}^2} \right\} \le (1 - h) |\omega_{\nu_0}|.$$

Therefore,

$$\left|\frac{(v^{(\nu_0)})_{z\overline{z}}}{(v^{(\nu_0)})_{zz}}\right| \leq \frac{|\omega_{\nu_0}|h}{|\omega_{\nu_0}|(2-h) - 8(r_{\nu_0})^2 \max_{\overline{D}(\mathfrak{a}_{\nu_0}, r_{\nu_0})} |(u_1^{(\nu_0)} + u_2)_{zz}|} \leq h$$

and (3.6) holds true for q = h.

4. The main theorem

Now we are ready to prove our main result under the hypothesis that $supp f \subset \subset D_o = D \setminus \bigcup_{\nu=0}^{\infty} \overline{D}(\mathfrak{a}_{\nu}, \frac{2}{3}m_{\nu}).$

Theorem 4.1. Let $1 , <math>2 - \frac{2}{p} < h < 1$ and $f \in L^p(D)$ with $suppf \subset D_o$. Then there exist a function $v \in W_0^{2,p}(D)$ and a uniformly elliptic operator L of the form (1.1) with bounded measurable coefficients in D and lower ellipticity constant $\frac{1-h}{2}$ such that Lv = f a.e. in D.

Proof. In what follows, we will denote by the same letter C different constants. Choose $\gamma > 4(p-1)$ and notice that since $\gamma > 2 - \frac{2}{p}$, Lemma 2.3 holds true. For any $\nu \in \mathbb{N} \cup \{0\}$, denote by D_{ν} the disk of center \mathfrak{a}_{ν} and radius $r_{\nu} = \lambda_{\nu} m_{\nu}$, where λ_{ν} is given by (3.5). Let

(4.1)
$$v := \begin{cases} u & \text{in } D \setminus \bigcup_{\nu=0}^{\infty} D_{\nu}, \\ v^{(\nu)} = s^{(\nu)} + u_1^{(\nu)} + u_2 & \text{in } D_{\nu} \text{ for all } \nu = 0, 1 \dots. \end{cases}$$

Then v satisfies $\Delta v = f$ in $D \setminus \bigcup_{\nu=0}^{\infty} D_{\nu}$ and, by Lemma 3.2, it solves an elliptic equation Lv = 0, i.e., Lv = f, in each D_{ν} with ellipticity constant $\frac{1}{2}(1-h)$. By the same lemma, it is also in $W_{loc}^{2,p}(D)$. To prove that $v \in W^{2,p}(D)$, it is sufficient to show that $v \in L^p(D)$ and $\Delta v \in L^p(D)$. First of all, one has

$$\|v\|_{L^p(D)} \le \|u\|_{L^p(D)} + \frac{1}{2} \sum_{\nu=0}^{\infty} |\omega_{\nu}| \|\log(|\cdot - \mathfrak{a}_{\nu}|)\|_{L^p(D_{\nu})} + \sum_{\nu=0}^{\infty} \|s_{\nu}\|_{L^p(D_{\nu})}.$$

Now by Lemma 2.3, $||u||_{L^p(D)} < +\infty$; moreover,

$$\sum_{\nu=0}^{\infty} |\omega_{\nu}| \| \log(|\cdot - \mathfrak{a}_{\nu}|) \|_{L^{p}(D_{\nu})} \le C \sum_{\nu=0}^{\infty} |\omega_{\nu}| < +\infty.$$

In addition, by (3.3) of Lemma 3.1,

$$\sum_{\nu=0}^{\infty} \|s_{\nu}\|_{L^{p}(D_{\nu})} \le C \sum_{\nu=0}^{\infty} |\omega_{\nu}| r_{\nu}^{2p} (1 + |\log(r_{\nu})|) < +\infty$$

since $\{\omega_{\nu}\} \in \ell^1$ and $r_{\nu}^{2p}(1+|\log(r_{\nu})|)$ tends to zero as $\nu \to \infty$. Hence $v \in L^p(D)$.

On the other hand, since $\Delta v = f$ in $D \setminus \bigcup_{\nu=0}^{\infty} D_{\nu}$ and by (3.4) of Lemma 3.1,

$$\begin{split} \|\Delta v\|_{L^{p}(D)}^{p} &\leq \|f\|_{L^{p}(D)}^{p} + \sum_{\nu=0}^{\infty} \|\Delta s_{\nu}\|_{L^{p}(D_{\nu})}^{p} \\ &\leq \|f\|_{L^{p}(D)}^{p} + C\sum_{\nu=0}^{\infty} |\omega_{\nu}|^{p} r_{\nu}^{2(1-p)}. \end{split}$$

Now from (3.5), we may write $\lambda_{\nu}^2 \leq C |\omega_{\nu}|$ and using (2.8) for sufficiently large ν , we have

$$|\omega_{\nu}|^{p} r_{\nu}^{2(1-p)} = |\omega_{\nu}|^{p} (\lambda_{\nu}^{2} m_{\nu}^{2})^{(1-p)} \leq C \frac{|\omega_{\nu}|}{\nu^{2(1-p)}} = C(|\omega_{\nu}|\nu^{\frac{\gamma}{2}})\nu^{-\frac{\gamma}{2}+2(p-1)}.$$

Since $\{\nu^{\gamma/2}\omega_{\nu}\} \in \ell^1$ and $2(p-1) - \gamma/2 \leq 0$, it follows that the series

$$\sum_{\nu=0}^{\infty} |\omega_{\nu}|^p r_{\nu}^{2(1-p)}$$

is convergent and hence that $\|\Delta v\|_{L^p(D)}^p < +\infty$.

To conclude, we need to prove that $v|_{\partial D} = 0$ and $\frac{\partial v}{\partial n}|_{\partial D} = 0$. For any $N = 0, 1, \dots$, we set

$$v^{(N)} := \begin{cases} u^{(N)} & \text{in } D \setminus \bigcup_{\nu=0}^{N} D_{\nu}, \\ u^{(N)} + s^{(\nu)} - l^{(\nu)} & \text{in } D_{\nu}, \ \nu = 0, 1, \dots, N, \end{cases}$$

where $u^{(N)}$ is the partial sum defined in Lemma 2.3. The function $v^{(N)}$ coincides with $u^{(N)}$ in a neighbourhood of ∂D and hence it is regular up to the boundary. In particular,

$$v^{(N)}\Big|_{\partial D} = 0$$
 and $\lim_{N \to \infty} \left\| \frac{\partial v^{(N)}}{\partial n} \Big|_{\partial D} \right\|_{\mathbb{A}^{(\gamma)}} = 0.$

Moreover, $v^{(N)}$ converges to v in $L^p(D)$: In fact,

$$\|v^{(N)} - v\|_{L^{p}(D)}^{p} \leq \|v^{(N)} - v\|_{L^{p}(D \setminus \bigcup_{\nu=N+1}^{\infty} D_{\nu})}^{p} + \sum_{\nu=N+1}^{\infty} \|v^{(N)} - v\|_{L^{p}(D_{\nu})}^{p},$$

$$\begin{aligned} \|v^{(N)} - v\|_{L^{p}(D \setminus \bigcup_{\nu=N+1}^{\infty} D_{\nu})} &\leq \pi \sum_{\nu=N+1}^{\infty} |\omega_{\nu}| \|G(\cdot, \mathfrak{a}_{\nu})\|_{L^{p}(D)} \\ &\leq C(p) \sum_{\nu=N+1}^{\infty} |\omega_{\nu}| \xrightarrow{N \to \infty} 0 \end{aligned}$$

and

$$\sum_{\nu=N+1}^{\infty} \|v^{(N)} - v\|_{L^{p}(D_{\nu})} \leq \pi \sum_{\nu=N+1}^{\infty} |\omega_{\nu}| \|G(\cdot, \mathfrak{a}_{\nu})\|_{L^{p}(D)} + \sum_{\nu=N+1}^{\infty} \|s_{\nu}\|_{L^{p}(D_{\nu})} + \frac{1}{2} \sum_{\nu=N+1}^{\infty} |\omega_{\nu}| \|\ln|z - \mathfrak{a}_{\nu}|\|_{L^{p}(D)}$$
$$\leq C \sum_{\nu=N+1}^{\infty} |\omega_{\nu}| + \sum_{\nu=N+1}^{\infty} \|s^{\nu}\|_{L^{p}(D_{\nu})} \xrightarrow{N \to \infty} 0.$$

In addition,

$$\|\Delta v^{(N)} - \Delta v\|_{L^p(D)} \le \sum_{\nu=N+1}^{\infty} \|\Delta s^{\nu}\|_{L^p(D_{\nu})} \xrightarrow{N \to \infty} 0$$

since the series $\sum_{\nu=0}^{\infty} \|\Delta s_{\nu}\|_{L^{p}(D_{\nu})}$ converge.

From this it follows that $v^{(N)}$ converges to v in $W^{2,p}(D)$, and hence that $v^{(N)}|_{\partial D}$ tends to $v|_{\partial D}$ in $W^{2-1/p,p}(\partial D)$ and $\frac{\partial v^{(N)}}{\partial n}\Big|_{\partial D}$ tends to $\frac{\partial v}{\partial n}\Big|_{\partial D}$ in $W^{1-1/p,p}(\partial D)$. This implies that $v|_{\partial D} = 0$ and $\frac{\partial v}{\partial n}\Big|_{\partial D} = 0$.

Finally, let us remove the previous restriction on the support of f.

Theorem 4.2. Let $1 , <math>2 - \frac{2}{p} < h < 1$ and $f \in L^p(\mathbb{R}^2)$ with compact support. Then there exist a function $v \in W_0^{2,p}(\mathbb{R}^2)$ and a uniformly elliptic operator L with bounded and measurable coefficients and lower ellipticity constant $\frac{1-h}{2}$ such that Lv = f a.e. in \mathbb{R}^2 .

Proof. Assume $supp f \subset D(0, R)$ and let $z_o \in D_o$ and $\rho > 0$ be such that $\overline{D}(z_o, \rho) \subset D_o$. Then $\widetilde{f}(z') := (\frac{\rho}{R})^2 f(\frac{R}{\rho}(z'-z_o))$ satisfies $supp \widetilde{f} \subset D(z_o, \rho)$ and by Theorem 4.1, there exist a function $\widetilde{v} \in W_0^{2,p}(D)$ and a uniformly elliptic operator \widetilde{L} of the form $\widetilde{L} := \widetilde{a}^{11}(z')\partial_{x'x'} + 2\widetilde{a}^{12}(z')\partial_{x'y'} + \widetilde{a}^{22}(z')\partial_{y'y'}$ with lower ellipticity constant $\frac{1-\rho}{2}$ such that $\widetilde{L}\widetilde{v} = \widetilde{f}$ a.e. in D.

with lower ellipticity constant $\frac{1-h}{2}$ such that $\tilde{L}\tilde{v} = \tilde{f}$ a.e. in D. Now, let $v(z) := \tilde{v}(z') = \tilde{v}(z_o + \frac{\rho}{R}z)$ and $L := a^{11}(z)\partial_{xx} + 2a^{12}(z)\partial_{xy} + a^{22}(z)\partial_{yy}$ with $a^{ij}(z) := \tilde{a}^{ij}(z') = \tilde{a}^{ij}(z_o + \frac{\rho}{R}z)$ in $D(-(R/\rho)z_o, R/\rho)$ and $L = \Delta$, otherwise. Then $v \in W_0^{2,p}(\mathbb{R}^2)$, L is uniformly elliptic with the same ellipticity constant of \tilde{L} and Lv = f a.e. in \mathbb{R}^2 .

Remark 4.3. Let p, f, v, L be as in Theorem 4.2. By classical results on second order elliptic equations and elliptic first order system (see e.g. [2]), one has that the function $w := v_x - iv_y$ belongs to $W_0^{1,p}(\mathbb{C})$ and satisfies a complex uniformly elliptic first order system of the form

$$w_{\bar{z}} = \mu w_z + \nu \bar{w}_{\bar{z}} + \gamma \quad \text{ in } \mathbb{C}$$

with $\mu = \mu(z)$, $\nu = \nu(z)$ and $\gamma = \gamma(z)$, complex-valued functions, such that $|\mu| + |\nu| \le k < 1$ and $|\gamma| \le k'$.

References

- K. Astala, T. Iwaniec, and G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane, J. Reine Angew. Math. 591 (2006), 49–74.
- [2] L. Bers, F. John, and M. Schechter, Partial Differential Equations, Interscience, 1964.
- [3] P. Buonocore and P. Manselli, Solutions to two dimensional, uniformly elliptic equations, that lie in Sobolev spaces and have compact support, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 3, 476–484.
- [4] C. Giannotti, A compactly supported solution to a three-dimensional uniformly elliptic equation without zero order term, J. Differential Equations 201 (2004), no. 2, 234–249.

- [5] C. Giannotti and P. Manselli, Expansions with Poisson kernels and related topics, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 1, 153–173.
- [6] _____, On elliptic extensions in the disk, Potential Anal. 33 (2010), no. 3, 249–262.
- T. H. Wolff, Some constructions with solutions of variable coefficient elliptic equations, J. Geom. Anal. 3 (1993), no. 5, 423–511.

ORAZIO ARENA DIPARTIMENTO DI COSTRUZIONI E RESTAURO UNIVERSITÀ DI FIRENZE PIAZZA BRUNELLESCHI, 6 I-50121 FIRENZE, ITALY *E-mail address*: arena@unifi.it

CRISTINA GIANNOTTI SCUOLA DI SCIENZE E TECNOLOGIE UNIVERSITÀ DI CAMERINO VIA MADONNA DELLE CARCERI I- 62032 CAMERINO (MACERATA), ITALY *E-mail address*: cristina.giannotti@unicam.it