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ELLIPTIC EQUATIONS WITH COMPACTLY

SUPPORTED SOLUTIONS

Orazio Arena and Cristina Giannotti

Abstract. For any p ∈ (1, 2) and arbitrary f ∈ Lp(R2) with compact
support, it is proved that there exists a pair (L, u), with L second order

uniformly elliptic operator and u ∈ W
2,p
0 (R2) such that Lu = f a.e. in

R2.

1. Introduction

Let L be a second order uniformly elliptic operator with bounded measurable
coefficients in R2 of the form

(1.1) L := a11∂xx + 2a12∂xy + a22∂yy.

When u ∈ W 2,2(R2) is a solution of the equation Lu = f for a compactly
supported function f , in general, one cannot expect that u also has compact
support.

On the other hand, for the case when p is small enough so that the a priori
bounds of K. Astala, T. Iwaniec, G. Martin [1] do not hold, Buonocore and
Manselli proved in [3] that there exists an operator L (of the above form and
with first order terms) and a non trivial u ∈ W 2,p(R2) with compact support
satisfying the equation Lu = 0 a.e. (see [3]). A similar example in R3 has been
constructed in [4].

In this paper, we consider the corresponding question on compactly sup-
ported solutions for the non-homogeneous equation Lu = f and prove that:

For any given p ∈ (1, 2) and f ∈ Lp(R2) with compact support, there exist an

operator L of the form (1.1) and a function u ∈ W 2,p
0 (R2) satisfying Lu = f

a.e. in R2.

The proof basically follows arguments in [6]. In that paper, the authors
considered the homogeneous equation Lu = 0 and proved that, given two
arbitrary functions f (0) and f (1) on the boundary ∂D of the unit disk D ⊂ R2,
there exists a function u and a second order uniformly elliptic operator L of
the form (1.1) so that Lu = 0 in D, u|∂D = f (0) and ∂u

∂n

∣∣
∂D

= f (1).
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Here, the construction starts by taking a function u satisfying ∆u = f a.e.
in the unit disk D of the form u = w + ũ, where w is the solution to the
Dirichlet problem ∆w = f in D, w = 0 on ∂D and ũ is the sum of a series of
Green functions with poles in a countable subset N of D with no accumulation
points in D. Such a function u assumes the boundary conditions u|∂D = 0,
∂u
∂n

∣∣
∂D

= 0 in a suitably generalized sense and its existence follows from a result

in [5]. After this, following the method used in [6], we modify the function u
and the operator ∆ in suitably chosen disks centered at the points of N and
we obtain an elliptic operator L of the form (1.1) and a function u′ ∈ W 2,p(D)
satisfying all required properties.

The paper is organized as follows: In §2, we recall notations and results of
[6] and determine the previously described function u = w + ũ (Lemma 2.2).
In §3 we outline the modifying procedure for u and ∆ and in §4, we prove the
main result.

2. Notations and preliminary results

In what follows, we identify R2 with C and, for any r > 0, we denote by
D(a, r) the open disk centered at a ∈ C with radius r. The unit disk D(0, 1)
will be simply denoted by D.

Lα is the family of linear second order uniformly elliptic operators with
bounded measurable coefficients in D of the form (1.1) with lower ellipticity
constant α > 0 and upper ellipticity constant 1/α.

Given W 2,p(D), the Sobolev space of functions in Lp(D) with second deriva-
tives in Lp(D), p > 1, for any v ∈ W 2,p(D), we denote by v|∂D and ∂v

∂n

∣∣
∂D

the traces on ∂D of v and of ∂v
∂r , respectively. We also denote by W 2,p

0 (D) the

closure of C∞
0 (D) in W 2,p(D), i.e., the class of v ∈ W 2,p(D) such that v|∂D = 0

and ∂v
∂n

∣∣
∂D

= 0.
Let us recall some notations and definitions from [6].
For any real number γ ≥ 0, we denote by A(γ) the Banach space of real-

valued functions, defined on ∂D, of the form

(2.1) f(eiθ) =
a0
2

+

∞∑

n=1

(an cosnθ + bn sinnθ)

with Fourier coefficients an, bn such that

(2.2) {nγan}, {nγbn} ∈ ℓ1

and norm defined by ‖f‖
A(γ) = ‖{nγan}‖ℓ1 + ‖{nγbn}‖ℓ1 .

Also, for any γ ≥ 0, let σ be a fixed constant, 0 < σ < 1
2 , depending on γ

such that

(2.3)
∞∑

p=1

(2p+ 1)γ σ2p < 1
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and let ζ
(j)
2n, l (n ∈ N, l = 0, . . . , 2n−1, j = 1, 2) be the 4n-th roots of σ4 ordered

as follows:

(2.4) ζ
(1)
2n, l = σ

1
n e−

π
n
l i, l = 0, . . . , 2n− 1,

(2.5) ζ
(2)
2n, l = σ

1
n e−(− π

2n+ π
n
l) i, l = 0, . . . , 2n− 1.

Let us denote by N := {aν}ν≥0 the sequence given by 0 and the points ζ
(j)
2n, l

ordered in the following way:

a 0 = 0, aν = ζ
(j)
2n, l if ν = 1 + 2(n− 1)n+ 2(j − 1)n+ l

for any n ∈ N, l = 0, . . . , 2n− 1, j = 1, 2. Notice that N has no limit points in
D.

We also set

(2.6) mν :=
1

2
min
µ6=ν

|aµ − aν |

(indeed, one may alternatively consider constants mν := ǫminµ6=ν |aµ − aν | for
any other fixed ǫ ∈ (0, 12 ]). Notice that as 1 + 2n(n − 1) ≤ ν ≤ 2n2 + 2n, for
any fixed value of ν, the corresponding value of n satisfies the inequalities

(2.7)
−1 +

√
1 + 2ν

2
≤ n ≤ 1 +

√
2ν − 1

2
.

Since |aν | = σ
1
n , it follows that mν ≥ σ

1
n+1 −σ

1
n

2 = 1
2e

x̃ ln(1/σ)
n(n+1) for some x̃ ∈

( 1n lnσ, 1
n+1 lnσ) and hence

(2.8) mν ≥ σ ln(1/σ)

2(n+ 1)2
≥ 2σ ln(1/σ)

(3 +
√
2ν − 1)2

≥ C(σ)

ν
.

Notice that the set

Do = D \ ∪∞
ν=0D(aν ,

2

3
mν)

is an open non-empty subset of D.
Let G(z, ζ) be the Green function for the Laplace operator in D with pole

ζ:

G(z, ζ) = − 1

2π
ln

∣∣∣∣
z − ζ

1− zζ

∣∣∣∣ , z 6= ζ.

The following result is proved in [5].

Fact 2.1. Let γ > 0 and σ be as above and 1 < p < 2. Given f (1) ∈ A(γ), there
exist a0 ∈ R, two sequences {αn}, {βn} and a constant K > 0 (depending on
γ, p only) such that:

(a) |a0|+ ||(·)γα·||ℓ1 + ||(·)γβ·||ℓ1 ≤ K
∥∥f (1)

∥∥
A(γ) ;
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(b) The function

ũ(z) = − πa0G(z, 0)

− π

∞∑

n=1

αn

2σn

n−1∑

p=0

[
G
(
z, ζ

(1)
2n, 2p

)
−G

(
z, ζ

(1)
2n, 2p+1

)]
(2.9)

− π

∞∑

n=1

βn

2σn

n−1∑

p=0

[
G
(
z, ζ

(2)
2n, 2p

)
−G

(
z, ζ

(2)
2n, 2p+1

)]

is harmonic in D \N ; ũ belongs to Lp(D) with its first derivatives and

||ũ||Lp(D) + ||Dũ||Lp(D) ≤ K‖f (1)‖A(γ) ;

(c) For N ∈ N, the partial sums of ũ defined as

ũ(N)(z) =− πa0G(z, 0)− π

N∑

n=1

αn

2σn

n−1∑

p=0

[
G
(
z, ζ

(1)
2n, 2p

)
−G

(
z, ζ

(1)
2n, 2p+1

)]

− π

N∑

n=1

βn

2σn

n−1∑

p=0

[
G
(
z, ζ

(2)
2n, 2p

)
−G

(
z, ζ

(2)
2n, 2p+1

)]
(2.10)

have the boundary properties:
i) ũ(N) is of class C2 in a neighbourhood of ∂D, ũ(N)

∣∣
∂D

= 0,

∂ũ(N)

∂n

∣∣∣
∂D

∈ A(γ);

ii) ũ(N) converges to ũ uniformly on any compact subset of D \ N
and

(2.11)

∥∥∥∥
∂ũ(N)

∂n

∣∣∣∣
∂D

− f (1)

∥∥∥∥
A(γ)

→ 0.

Now let f ∈ Lp(R2), p > 1, and denote by supp f the support of f , i.e.,
the complement of the greatest open set in which f = 0 a.e.. For the moment,
assume that

supp f ⊂⊂ Do = D \ ∪∞
ν=0D(aν ,

2

3
mν)

and let w ∈ W 2,p(D) be the solution to the Dirichlet problem

(2.12)





∆w = f in D,

w = 0 on ∂D.

Notice that w is harmonic in a neighbourhood of ∂D and hence ∂w
∂n

∣∣
∂D

belongs

to A(γ) for all γ ≥ 0. Thus, the following is an immediate consequence of Fact
2.1, applied with f (1) = − ∂w

∂n

∣∣
∂D

.

Lemma 2.2. Let γ, σ, p, f , w be as before and ũ the function associated to

f (1) := − ∂w
∂n

∣∣
∂D

as in Fact 2.1. Then
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(a) the function

(2.13) u = w + ũ

is in W 2,p
loc (D \ N ) ∩W 1,p(D) and ∆u = f a.e. in D;

(b) The partial sums u(N)(z) = w(z) + ũ(N)(z) converge to u uniformly on

compact subsets of D\N , are harmonic in a neighbourhood of ∂D with

u(N)
∣∣
∂D

= 0, and

(2.14)

∥∥∥∥
∂u(N)

∂n

∣∣∣∣
∂D

∥∥∥∥
A(γ)

→ 0.

Let us write u in the form

(2.15) u(z) = w(z) + π

∞∑

ν=0

ωνG(z, aν),

where the coefficients ων are: ω0 = −a0,

ων =






(−1)l+1 αn

2nσ if ν = 1 + 2(n− 1)n+ l,

(−1)l+1 βn

2nσ if ν = 1 + 2(n− 1)n+ 2n+ l

and satisfy {ν γ

2 ων} ∈ ℓ1.
Moreover, one can write u as the sum u = u1 + u2, where

(2.16) u1(z) = −1

2

∞∑

ν=0

ων ln |z − aν|,

and

(2.17) u2(z) = w +
1

2

∞∑

ν=1

ων

(
ln |aν|+ ln |z − 1

aν
|
)
.

Given ν0 ∈ N ∪ {0}, let us define

(2.18) l(ν0)(z) := −1

2
ων0 ln |z − aν0 |

and

(2.19) u
(ν0)
1 (z) := u1(z)− l(ν0)(z) = −1

2

∑

ν 6=ν0

ων ln |z − aν |.

The following lemma states some properties of these functions.

Lemma 2.3. Let f ∈ Lp(D) with supp f ⊂⊂ Do.

a) u1 is harmonic in D \ N and u
(ν0)
1 in (D \N ) ∪ {aν0}; u2 is harmonic

in D \ supp f and ∆u2 = f a.e. in D.

b) If γ > 2− 2
p , then u2 ∈ W 2,p(D).
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c) Let ν0 ∈ N ∪ {0} and mν0 be as in (2.6). Then there exists a positive

constant A such that

(2.20) max
D(a ν0 ,mν0/2)

|D2u2| ≤
A

m2
ν0

( ∞∑

ν=1

|ων |+ ‖f‖Lp(D)

)
.

Proof. It is sufficient to prove only (b) and (c). Clearly,

‖w‖W 2,p(D) ≤ C ‖f‖Lp(D)

for some constant C. Now take a point z ∈ D and observe that
∣∣∣∣z −

1

aν

∣∣∣∣ ≥
1

|aν |
− 1 =

1− |aν |
|aν |

.

Since 1 − |aν | = 1 − σ
1
n for some n ∈ N, we have that 1 − |aν | = ex̃ 1

n ln 1
σ for

some x̃ in the interval ( 1n lnσ, 0) and hence, by (2.7),

1− |aν | ≥
σ ln 1/σ

n
≥ K̃√

ν
,

where K̃ is a constant depending on γ. Then from (2.17), one has

max
D

|u2 − w| ≤ C

∞∑

ν=1

|ων |(
1

2
| log σ|+ | log K̃|+ 1

2
log ν) < +∞.

Moreover, it is not difficult to check that

∥∥D2(u2 − w)
∥∥
Lp(D)

≤ C

∞∑

ν=1

|ων |
∥∥∥∥| · −

1

aν
|−2

∥∥∥∥
Lp(D)

≤ C
∞∑

ν=1

|ων |+ C
∞∑

ν=N+1

νγ/2|ων |
∥∥∥∥| · −

1

aν
|γ−2

∥∥∥∥
Lp(D( 1

aν
,3))

,

where N is chosen sufficiently large such that 1
|aν |

≤ 2 for ν > N .

Since 2 + p(γ − 2) > 0 and
∥∥∥∥| · −

1

a ν
|γ−2

∥∥∥∥
Lp(D( 1

aν
,3))

≤ (2π)1/p
( 32+p(γ−2))

2 + p(γ − 2))

)1/p

< +∞,

(b) follows.
Let us prove (c). As supp f ⊂⊂ Do and

∣∣D2
zG(z, ζ)

∣∣ ≤ C

|z − ζ|2
for some constant C, we get

max
D(a ν0 ,mν0/2)

|D2w| ≤ max
D(a ν0 ,mν0/2)

∣∣∣∣
∫

Do

D2
zG(z, ζ)f(ζ) dζ

∣∣∣∣ ≤ C

m2
ν0

||f ||Lp(D).
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Moreover,

max
D(a ν0 ,mν0)

|D2(u2 − w)| ≤ C

m2
ν0

∞∑

ν=1

|ων |

and the bound (2.20) follows. �

3. Modifying u and ∆ in neighbourhoods of aν ∈ N

From the results of the previous section, it turns out that we need to modify
the function u and the operator ∆ in neighbourhoods of the points aν ∈ N
in order to obtain a new function v and a new second order uniformly elliptic
operator L of the form (1.1) with the following properties:

i) v ∈ C1,1(D \ N );

ii) v ∈ W 2,p
0 (D);

iii) Lv = f a.e. in D.

For a fixed ν0 ∈ N ∪ {0}, let
rν0 = λν0mν0

with mν0 as in (2.6) and λν0 a constant in (0,1/3) to be fixed later. Of course,
D(aν0 , rν0) ⊂ D and D(aν0 , 2rν0) ∩D(aν , 2rν) = ∅ if ν 6= ν0.

To modify the function u inside the disk D(aν0 , rν0), let us replace the term
l(ν0) with a smoother function as suggested by the following lemma from [6].

Lemma 3.1. Let ν0 ∈ N∪ {0}, 1 < p < 2, 0 < 2− 2
p < h < 1 and consider the

function in D(aν0 , rν0) defined by

(3.1) s(ν0)(r) = H
(ν0)
0 +H

(ν0)
1 rh, r = |z − aν0 |,

where

(3.2) H
(ν0)
0 = −ω ν0

2
ln rν0 +

ων0

2h
, H

(ν0)
1 = −ων0

2h
r−h
ν0 .

Then

i) s(ν0)(rν0 ) = l(ν0)(rν0 ) and
∂s(ν0)

∂r (rν0 ) =
∂l(ν0)

∂r (rν0 );

ii) s(ν0)(| · −aν0 |) belongs to W 2,p(D(aν0 , rν0)) and

(3.3) ||s(ν0)||Lp(D(a ν0 ,rν0))
≤ C|ων0 |r2pν0 (1 + | ln rν0 |),

(3.4) ||∆s(ν0)||Lp(D(a ν0 ,rν0))
= C′|ων0 |r

2
p
−2

ν0 ,

where C and C′ are constants, both depending only on p and on h.

For reader’s convenience, we recall its short proof.

Proof. It is enough to prove the last two formulas. By means of (3.1) and (3.2),
we have

||s(ν0)||Lp(D(a ν0 ,rν0))
≤ |H(ν0)

0 |π1/pr2/pν0 + |H(ν0)
1 |(2π)1/p

(∫ rν0

0

rph+1 dr

) 1
p
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= π1/p |ων0 |
2

r2/pν0 (| ln rν0 |+
1

h
+

21/p

h(ph+ 2)1/p
)

≤ C|ων0 |r2/pν0 (1 + | ln rν0 |).

Moreover, ∆s(ν0) = (s(ν0))rr +
(s(ν0))r

r = −h
2ων0r

−h
ν0 rh−2 so that

||∆s(ν0)||Lp(D(a ν0 ,rν0))
= (2π)1/p|ων0 |r−h

ν0

h

2

(∫ rν0

0

rp(h−2)+1 dr

) 1
p

=
(2π)1/p|ων0 |(h/2)
(p(h− 2) + 2)1/p

r
2
p
−2

ν0 .
�

Then we have:

Lemma 3.2. Let p, h, ν0 be as in the previous lemma. Set Ω =
∑∞

ν=0 |ων | +
||f ||Lp(D) and

(3.5) λν0 = min

{
1

4
,

√
(1− h)|ων0 |
4(4A+ 1)Ω

}
,

where A is the constant in the estimate (2.20).
Consider the following function v(ν0) on D(aν0 , 2rν0) :

v(ν0) =





s(ν0)(| · −aν0 |) + u
(ν0)
1 + u2 in D(aν0 , rν0 ),

u in D(aν0 , 2rν0) \D(aν0 , rν0).

It turns out that:

(a) v(ν0) ∈ C1,1(D(aν0 , 2rν0) \ {aν0});
(b) v(ν0) is harmonic in D(aν0 , 2rν0) \D(aν0 , rν0 );
(c) v(ν0) ∈ W 2,p(D(aν0 , 2rν0)).

Moreover, v(ν0) satisfies a second order, uniformly elliptic equation Lv(ν0) = 0
with bounded measurable coefficients in D(aν0 , 2rν0) and lower ellipticity con-

stant 1
2 (1− h).

Proof. Statement (a) follows by Lemma 3.1(i) and from the fact that v(ν0) has
second order derivatives bounded in every compact subset of D(aν0 , 2rν0) \
{aν0}. Statement (b) is clear and in regard to (c), it is enough to use Lemma
3.1(ii).

As far as the last claim is concerned, by known facts (see e.g. [2], Ch. 6),
one needs to verify the existence of a number q ∈ (0, 1) such that

(3.6)

∣∣∣∣
(v(ν0))zz
(v(ν0))zz

∣∣∣∣ ≤ q in D(aν0 , rν0).
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Let us prove that (3.6) holds true with q = h. Indeed, recalling that u
(ν0)
1 and

u2 are harmonic in D(aν0 , rν0), one may write

∣∣∣∣
(v(ν0))zz
(v(ν0))zz

∣∣∣∣ =
∣∣∣∣∣

(s(ν0)(| · −aν0 |))zz
(s(ν0)(| · −aν0 |) + u

(ν0)
1 + u2)zz

∣∣∣∣∣ .

On the other hand, by (3.1), (3.2) and using polar coordinates with origin aν0 ,

(s(ν0)(| · −aν0 |))zz =
ων0

4
(1− h

2
)

(
r

rν0

)h

(z − aν0)
−2,

(sν0(| · −aν0 |))zz = −ων0

8
h

(
r

rν0

)h

r−2.

Then by easy calculations,

∣∣∣∣
(v(ν0))zz
(v(ν0))zz

∣∣∣∣ =

∣∣∣∣∣∣∣

ων0hr
−2(z − aν0)

2

2ων0(1− h
2 ) + 8(u

(ν0)
1 + u2)zz

(
r

rν0

)−h

(z − aν0)
2

∣∣∣∣∣∣∣

=
|ων0 |h∣∣∣∣ων0(2− h) + 8(u

(ν0)
1 + u2)zz

(
r

rν0

)−h

(z − aν0)
2

∣∣∣∣
.

Now, it is clear that
∣∣∣∣∣8(u

(ν0)
1 + u2)zz

(
r

rν0

)−h

(z − aν0)
2

∣∣∣∣∣ ≤ 8r2ν0 max
D(a ν0 ,rν0)

∣∣∣(u(ν0)
1 + u2)zz

∣∣∣ .

Moreover, since for any z ∈ D(aν0 , rν0) and ν 6= ν0,

|z − aν | ≥ |aν0 − aν | − |z − aν0 | ≥ mν0 − rν0 = (1− λν0)mν0 ,

we have ∣∣∣∣∣
∂2u

(ν0)
1

∂z2

∣∣∣∣∣ ≤
1

4

∑

ν 6=ν0

|ων |
|z − aν |2

≤ 1

4

Ω

(1 − λν0)
2m2

ν0

and, recalling the bound (2.20) and using (3.5), we get

8r2ν0 max
D(a ν0 ,rν0)

∣∣∣(u(ν0)
1 + u2)zz

∣∣∣ ≤ 8r2ν0

{
AΩ

m2
ν0

+
Ω

4(1− λν0 )
2m2

ν0

}
≤ (1−h)|ων0|.

Therefore,
∣∣∣∣
(v(ν0))zz
(v(ν0))zz

∣∣∣∣ ≤
|ων0 |h

|ων0 |(2− h)− 8(rν0)
2 maxD(a ν0 ,rν0)

|(u(ν0)
1 + u2)zz |

≤ h

and (3.6) holds true for q = h. �
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4. The main theorem

Now we are ready to prove our main result under the hypothesis that
suppf⊂⊂ Do = D \ ∪∞

ν=0D(aν ,
2
3mν).

Theorem 4.1. Let 1 < p < 2, 2− 2
p < h < 1 and f ∈ Lp(D) with suppf ⊂⊂

Do. Then there exist a function v ∈ W 2,p
0 (D) and a uniformly elliptic oper-

ator L of the form (1.1) with bounded measurable coefficients in D and lower

ellipticity constant 1−h
2 such that Lv = f a.e. in D.

Proof. In what follows, we will denote by the same letter C different constants.
Choose γ > 4(p − 1) and notice that since γ > 2 − 2

p , Lemma 2.3 holds true.

For any ν ∈ N∪{0}, denote by Dν the disk of center aν and radius rν = λνmν ,
where λν is given by (3.5). Let

(4.1) v :=

{
u in D \⋃∞

ν=0 Dν ,

v(ν) = s(ν) + u
(ν)
1 + u2 in Dν for all ν = 0, 1 . . . .

Then v satisfies ∆v = f in D\⋃∞
ν=0 Dν and, by Lemma 3.2, it solves an elliptic

equation Lv = 0, i.e., Lv = f , in each Dν with ellipticity constant 1
2 (1 − h).

By the same lemma, it is also in W 2,p
loc (D). To prove that v ∈ W 2,p(D), it is

sufficient to show that v ∈ Lp(D) and ∆v ∈ Lp(D). First of all, one has

‖v‖Lp(D) ≤ ‖u‖Lp(D) +
1

2

∞∑

ν=0

|ων |‖ log(| · −aν|)‖Lp(Dν) +

∞∑

ν=0

‖sν‖Lp(Dν).

Now by Lemma 2.3, ‖u‖Lp(D) < +∞; moreover,

∞∑

ν=0

|ων |‖ log(| · −aν|)‖Lp(Dν) ≤ C

∞∑

ν=0

|ων | < +∞.

In addition, by (3.3) of Lemma 3.1,

∞∑

ν=0

‖sν‖Lp(Dν) ≤ C

∞∑

ν=0

|ων |r2pν (1 + | log(rν)|) < +∞

since {ων} ∈ ℓ1 and r2pν (1 + | log(rν)|) tends to zero as ν → ∞. Hence v ∈
Lp(D).

On the other hand, since ∆v = f in D \ ⋃∞
ν=0 Dν and by (3.4) of Lemma

3.1,

‖∆v‖pLp(D) ≤ ‖f‖pLp(D) +

∞∑

ν=0

‖∆sν‖pLp(Dν)

≤ ‖f‖pLp(D) + C

∞∑

ν=0

|ων |pr2(1−p)
ν .
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Now from (3.5), we may write λ2
ν ≤ C|ων | and using (2.8) for sufficiently large

ν, we have

|ων |pr2(1−p)
ν = |ων |p(λ2

νm
2
ν)

(1−p) ≤ C
|ων |

ν2(1−p)
= C(|ων |ν

γ

2 )ν−
γ

2 +2(p−1).

Since {νγ/2ων} ∈ ℓ1 and 2(p− 1)− γ/2 ≤ 0, it follows that the series

∞∑

ν=0

|ων |pr2(1−p)
ν

is convergent and hence that ‖∆v‖pLp(D) < +∞.

To conclude, we need to prove that v|∂D = 0 and ∂v
∂n

∣∣
∂D

= 0.
For any N = 0, 1, . . . , we set

v(N) :=

{
u(N) in D \⋃N

ν=0 Dν ,
u(N) + s(ν) − l(ν) in Dν , ν = 0, 1, . . . , N ,

where u(N) is the partial sum defined in Lemma 2.3. The function v(N) coin-
cides with u(N) in a neighbourhood of ∂D and hence it is regular up to the
boundary. In particular,

v(N)
∣∣∣
∂D

= 0 and lim
N→∞

∥∥∥∥
∂v(N)

∂n

∣∣∣∣
∂D

∥∥∥∥
A(γ)

= 0.

Moreover, v(N) converges to v in Lp(D): In fact,

‖v(N) − v‖pLp(D) ≤ ‖v(N) − v‖pLp(D\
⋃

∞

ν=N+1 Dν)
+

∞∑

ν=N+1

‖v(N) − v‖pLp(Dν)
,

‖v(N) − v‖Lp(D\
⋃

∞

ν=N+1 Dν) ≤ π

∞∑

ν=N+1

|ων |‖G(·, aν)‖Lp(D)

≤ C(p)
∞∑

ν=N+1

|ων | N→∞−→ 0

and
∞∑

ν=N+1

‖v(N) − v‖Lp(Dν) ≤ π

∞∑

ν=N+1

|ων |‖G(·, aν)‖Lp(D) +

∞∑

ν=N+1

‖sν‖Lp(Dν)+

+
1

2

∞∑

ν=N+1

|ων |‖ ln |z − aν |‖Lp(D)

≤ C
∞∑

ν=N+1

|ων |+
∞∑

ν=N+1

‖sν‖Lp(Dν)
N→∞−→ 0.
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In addition,

‖∆v(N) −∆v‖Lp(D) ≤
∞∑

ν=N+1

‖∆sν‖Lp(Dν)
N→∞−→ 0

since the series
∑∞

ν=0 ‖∆sν‖Lp(Dν) converge.

From this it follows that v(N) converges to v in W 2,p(D), and hence that

v(N)
∣∣
∂D

tends to v|∂D in W 2−1/p,p(∂D) and ∂v(N)

∂n

∣∣∣
∂D

tends to ∂v
∂n

∣∣
∂D

in

W 1−1/p,p(∂D). This implies that v|∂D = 0 and ∂v
∂n

∣∣
∂D

= 0. �

Finally, let us remove the previous restriction on the support of f .

Theorem 4.2. Let 1 < p < 2, 2 − 2
p < h < 1 and f ∈ Lp(R2) with compact

support. Then there exist a function v ∈ W 2,p
0 (R2) and a uniformly elliptic op-

erator L with bounded and measurable coefficients and lower ellipticity constant
1−h
2 such that Lv = f a.e. in R2.

Proof. Assume supp f ⊂ D(0, R) and let zo ∈ Do and ρ > 0 be such that

D(zo, ρ) ⊂ Do. Then f̃(z′) := ( ρ
R )2f(Rρ (z

′ − zo)) satisfies supp f̃ ⊂ D(zo, ρ)

and by Theorem 4.1, there exist a function ṽ ∈ W 2,p
0 (D) and a uniformly

elliptic operator L̃ of the form L̃ := ã11(z′)∂x′x′ + 2ã12(z′)∂x′y′ + ã22(z′)∂y′y′

with lower ellipticity constant 1−h
2 such that L̃ṽ = f̃ a.e. in D.

Now, let v(z) := ṽ(z′) = ṽ(zo + ρ
Rz) and L := a11(z)∂xx + 2a12(z)∂xy +

a22(z)∂yy with aij(z) := ãij(z′) = ãij(zo + ρ
Rz) in D(−(R/ρ)zo, R/ρ) and

L = ∆, otherwise. Then v ∈ W 2,p
0 (R2), L is uniformly elliptic with the same

ellipticity constant of L̃ and Lv = f a.e. in R2. �

Remark 4.3. Let p, f , v, L be as in Theorem 4.2. By classical results on
second order elliptic equations and elliptic first order system (see e.g. [2]), one

has that the function w := vx− ivy belongs to W 1,p
0 (C) and satisfies a complex

uniformly elliptic first order system of the form

wz̄ = µwz + νw̄z̄ + γ in C

with µ = µ(z), ν = ν(z) and γ = γ(z), complex-valued functions, such that
|µ|+ |ν| ≤ k < 1 and |γ| ≤ k′.
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