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ORTHOGONAL ALMOST COMPLEX STRUCTURES ON THE

RIEMANNIAN PRODUCTS OF EVEN-DIMENSIONAL

ROUND SPHERES

Yunhee Euh and Kouei Sekigawa

Abstract. We discuss the integrability of orthogonal almost complex
structures on Riemannian products of even-dimensional round spheres
and give a partial answer to the question raised by E. Calabi concerning
the existence of complex structures on a product manifold of a round
2-sphere and of a round 4-sphere.

1. Introduction

It is well-known that a 2n-dimensional sphere S2n admits an almost complex
structure if and only if n = 1 or 3 and that any almost complex structure on
S2 is integrable. Also, the complex structure on S2 is unique with respect to
the conformal structure on it. A 2-dimensional sphere S2 equipped with this
complex structure is biholomorphic to a complex projective line CP1. On the
contrary, it is a long-standing open problem whether S6 admits an integrable
almost complex structure (namely, a complex structure) or not. Lebrun [4]
gave a partial answer to this problem, that is, proved that any orthogonal al-
most complex structure on a round 6-sphere is never integrable (see also [6],
Corollary 5.2). On one hand, Sutherland proved that a connected product of
even-dimensional spheres admits an almost complex structure if and only if
it is a product of copies of S2, S6 and S2 × S4 under a more general setting
([7], Theorem 3.1). In [1], Calabi raised the problem of whether the product
manifold V 2×S4 (V 2 is any closed orientable surface) can admit an integrable
almost complex structure or not. In the present note, we discuss the integrabil-
ity of orthogonal almost complex structures on a Riemannian product of round
2-spheres, 6-spheres and Riemannian product manifolds of a round 2-sphere
and a round 4-sphere, and prove the following.
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Theorem A. An orthogonal almost complex structure on a Riemannian prod-

uct of round 2-spheres, round 6-spheres, and Riemannian product manifolds

of a round 2-sphere and a round 4-sphere is integrable if and only if it is the

product of the canonical complex structures on round 2-spheres.

Remark 1. Let M be any Riemannian product of round 2-spheres. Then the
product of the canonical complex structures of round 2-spheres is necessarily
an orthogonal complex structure on M .

From Theorem A, we have the following partial answer to the above men-
tioned problem by Calabi.

Corollary B. Any orthogonal almost complex structure on a Riemannain prod-

uct of a round 2-sphere and a round 4-sphere is never integrable.

Remark 2. An explicit example of an orthogonal almost Hermitian structure on
a Riemannian product of a round 2-sphere and a round 4-sphere was introduced
and its geometric property was discussed in [3].

We denote by Sm(κ) an m-dimensional round sphere of positive constant
sectional curvature κ. Throughout the present paper, we shall mean by a round

m-sphere an oriented m-dimensional sphere with constant sectional curvature.

2. Preliminaries

Let M = (M,J, 〈, 〉) be a 2n-dimensional almost Hermitian manifold. We
denote by ∇ the Levi-Civita connection and R the curvature tensor of M

defined by

(2.1) R(X,Y )Z = [∇X ,∇Y ]−∇[X,Y ]Z

for X , Y , Z ∈ X(M), where X(M) denotes the Lie algebra of all smooth vector
fields on M . We denote the Ricci ∗-tensor of M by ρ∗ which is defined by

(2.2)
ρ∗(X,Y ) = tr

(

Z 7−→ R(X, JZ)JY
)

=
1

2
tr
(

Z 7−→ R(X, JY )JZ
)

for X , Y , Z ∈ X(M). Here we note that the Ricci ∗-tensor ρ∗ satisfies the
following equality

(2.3) ρ∗(X,Y ) = ρ∗(JY, JX)

for X , Y ∈ X(M). Thus from (2.3), we see that ρ∗ is symmetric if and only
if ρ∗ is J-invariant. We also denote by N the Nijenhuis tensor of the almost
complex structure J defined by

(2.4) N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ]

for X , Y ∈ X(M). It follows from the celebrated theorem by Newlander and
Nirenberg [5] that the almost complex structure J is integrable if and only
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if N = 0 holds everywhere on M . An almost Hermitian manifold with an
integrable almost complex structure is called a Hermitian manifold.

Now we set

(2.5) R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉

for X , Y , Z, W ∈ X(M). Gray [2] proved the following result which plays an
important role in our forthcoming arguments of the present paper.

Theorem 2.1. The curvature tensor R of a Hermitian manifold M=(M,J, 〈, 〉)
satisfies the following identity:

RWXY Z +RJWJXJY JZ −RJWJXY Z −RJWXJY Z

−RJWXY JZ −RWJXJY Z −RWJXY JZ −RWXJY JZ = 0

for any W , X, Y , Z ∈ X(M).

3. Lemmas

We shall prove several lemmas prior to the proof of Theorem A. First of
all, we note that orthogonal almost complex structures on the Riemannian
products of even-dimensional round spheres do not depend on the order of the
factors. We now consider the Riemannian product M = S2(α)×M ′, where M ′

is a Riemannian product of round 2-spheres, round 6-spheres and Riemannian
product manifolds of a round 2-sphere and a round 4-sphere.

Lemma 3.1. Let J be an orthogonal complex structure on M . Then J in-

duces a canonical complex structure on S2(α) and an orthogonal almost complex

structure on {p1} ×M ′ for each point p1 ∈ S2(α).

Proof. We denote by π1 and π2 the canonical projections defined by π1 : M →
S2(α) and π2 : M → M ′, respectively. We set

(3.1) x1 = dπ1(x), x2 = dπ2(x)

for any x ∈ TpM , p = (p1, p2) ∈ S2(α) × M ′. The tangent space TpM is
identified with the orthogonal direct sum of Tp1

S2(α) and Tp2
M ′ in the natural

way. Let x, y ∈ Tp1
S2(α) with x ⊥ y, |x| = |y| = 1. Then we get

(3.2) R(x, y, x, y) = −α.

Here, since dimS2(α) = 2, we may set

(3.3) (Jx)1 = 〈Jx, y〉y, (Jy)1 = 〈Jy, x〉x.

Now, taking account of (3.3), we further have

R(Jx, Jy, Jx, Jy)

= R((Jx)1 + (Jx)2, (Jy)1 + (Jy)2, (Jy)1 + (Jy)2, (Jx)1 + (Jx)2)

= R((Jx)1, (Jy)1, (Jx)1, (Jy)1) +R((Jx)2, (Jy)2, (Jx)2, (Jy)2)(3.4)

= − α
(

|(Jx)1|
2|(Jy)1|

2 − 〈(Jx)1, (Jy)1〉
2
)

+R((Jx)2, (Jy)2, (Jx)2, (Jy)2)
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= − α|(Jx)1|
2|(Jy)1|

2 +R2((Jx)2, (Jy)2, (Jx)2, (Jy)2),

where R2 is the curvature tensor of M ′.

(3.5)

R(Jx, Jy, x, y) = R((Jx)1, (Jy)1, x, y)

= 〈Jx, y〉〈x, Jy〉R(y, x, x, y)

= α〈Jx, y〉〈x, Jy〉

= −α〈x, Jy〉2,

(3.6)

R(Jx, y, Jx, y) = R((Jx)1, y, (Jx)1, y)

= 〈Jx, y〉2R(y, y, y, y)

= 0,

(3.7)

R(Jx, y, x, Jy) = R((Jx)1, y, x, (Jy)1)

= −〈Jx, y〉2R(y, y, x, x)

= 0,

(3.8)

R(x, Jy, x, Jy) = R(x, (Jy)1, x, (Jy)1)

= 〈Jy, x〉2R(x, x, x, x)

= 0.

Thus, from Theorem 2.1 and (3.2)∼(3.8), we have

(3.9)

0 = R(x, y, x, y) +R(Jx, Jy, Jx, Jy)− 2R(Jx, Jy, x, y)

−R(Jx, yJx, y)− 2R(Jx, y, x, Jy)−R(x, Jy, x, Jy)

= − α
{

1− |(Jx)1|
2|(Jy)1|

2
}

+R2((Jx)2, (Jy)2, (Jx)2, (Jy)2).

Since M ′ is non-negatively curved, we see that

(3.10) R2((Jx)2, (Jy)2, (Jx)2, (Jy)2) ≤ 0

for all x, y ∈ Tp1
S2(α). Thus, from (3.9) and (3.1), we see that

(3.11) |(Jx)1| = 1 and |(Jy)1| = 1

and hence Jx ∈ Tp1
S2(α) and Jy ∈ Tp1

S2(α) for any orthogonal pair {x, y} in
Tp1

S2(α). Since dπ1 is a linear map from TpM onto Tp1
S2(α), from (3.11),

we may easily see that Jx ∈ Tp1
S2(α) for all x ∈ Tp1

S2(α), and hence
J(Tp1

S2(α)) = Tp1
S2(α). Therefore we see also that J(Tp2

M ′) = Tp2
M ′. �

Now, for each p1 ∈ S2(α), we denote by J ′ = J ′(p1) the induced almost
complex structure on {p1}×M ′ as in Lemma 3.1. Then we have the following.

Lemma 3.2. The almost complex structure J ′ is integrable (and hence defines

a complex structure on {p1} ×M ′).
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Proof. Let N ′ be the Nijenhuis tensor of the almost complex structure J ′.
Taking account of Lemma 3.1, we have

(3.12)

N ′(X ′, Y ′) = [J ′X ′, J ′Y ′]− [X ′, Y ′]− J ′[J ′X ′, Y ′]− J ′[X ′, J ′Y ′]

= [JX ′, JY ′]− [X ′, Y ′]− J ′[JX ′, Y ′]− J ′[X ′, JY ′]

= [JX ′, JY ′]− [X ′, Y ′]− J [JX ′, Y ′]− J [X ′, JY ′]

= N(X ′, Y ′)

= 0

for all X ′, Y ′ ∈ X(M ′). Therefore, from (3.12), we see that the induced almost
complex structure J ′ on {p1} ×M ′ is integrable for each p1 ∈ S2(α). �

From Lemmas 3.1 and 3.2, if M ′ has a round 2-sphere as a factor, by a
suitable reordering of the factors, we may assume that M is expressed in the
formM ′ = S2(α)×M ′′, whereM ′′ is defined similarly asM ′. Applying Lemma
3.2 toM ′, it follows that the orthogonal complex structure J ′ induces a complex
structure on M ′′. By repeating similar operations, we may assume that M is
expressed in the form M = M1 × M2, where M1 = S2

1(α1) × · · · × S2
s (αs)

(0 ≤ α1 ≤ · · · ≤ αs) and M2 does not involve a round 2-sphere, and further
that the orthogonal almost complex structure J on M induces a canonical
orthogonal complex structure on M1 × {p2} for each point p2 ∈ M2 and an
orthogonal almost complex structure on {p1} × M2 for each point p1 ∈ M1,
respectively. Thus, taking account of the result due to Sutherland ([7], Theorem
3.1), we have the following.

Lemma 3.3. Let M be a Riemannian product of round 2-spheres, round 6-

spheres and Riemannian product manifolds of a round 2-sphere and a round

4-sphere, and J be an orthogonal complex structure on M . Then M takes of the

form M = M ′×M ′′ (after suitable reordering of the factors), where M ′ (resp.,
M ′′) is a Riemannian product of round 2-spheres (resp., a Riemannian product

of round 6-spheres), and further, J induces a canonical orthogonal complex

structure on M ′ × {p′′} for each point p′′ ∈ M ′′ and an orthogonal complex

structure on {p′} ×M ′′ for each point p′ ∈ M ′, respectively.

Now, we shall show the following.

Lemma 3.4. Let M = (M, 〈, 〉) be the Riemannian product of round 6-spheres

S6
a(βa)=(S6, 〈, 〉a) (0 < β1 ≤ β2 ≤ · · · ≤ βt, a=1, 2, . . . , t), and J be an orthog-

onal almost complex structure on M . Then for each point (p1, . . . , pa−1, pa+1,

. . . , pt) ∈ S6
1(β1)× · · · × S6

a−1(βa−1)× S6
a+1(βa+1)× · · · ×S6

t (βt), J induces an

orthogonal almost complex structure on {(p1, . . . , pa−1, pa+1, . . . , pt)} ×S6
a(βa).

Proof. Let p = (p1, p2, . . . , pt) ∈ M (pa ∈ S6
a(βa), a = 1, 2, . . . , t) be any point

of M and {e(a)i} (i = 1, 2, . . . , 6) be any orthonormal basis of Tpa
S6
a(βa). We

denote by R(a) the curvature tensor of S6
a(βa). Then we have

(3.13) R(x, y)z = R(a)(x, y)z
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and

(3.14) R(a)(x, y)z = βa

(

〈y, z〉ax− 〈x, z〉ay
)

for x, y, z ∈ Tpa
S6
a(βa). Now, we set

(3.15) Je(a)i =

t
∑

c=1

(

6
∑

j=1

J(a, c)ije(c)j
)

for 1 ≤ i ≤ 6 and 1 ≤ a ≤ t. Then since 〈Je(a)i, e(b)j〉 = −〈e(a)i, Je(b)j〉,
from (3.15), we have

〈Je(a)i, e(b)j〉 = 〈
∑

c

∑

k

J(a, c)ike(c)k, e(b)j〉

=
∑

c

∑

k

J(a, c)ikδcbδkj

= J(a, b)ij

and

〈e(a)i, Je(b)j〉 = 〈e(a)i,
∑

c

∑

k

J(b, c)jke(c)k〉

=
∑

c

∑

k

J(b, c)jkδacδik

= J(b, a)ji.

Hence we have

(3.16) J(a, b)ij = −J(b, a)ji

for 1 ≤ a, b ≤ t and 1 ≤ i, j ≤ 6. On one hand, since J2 = −id, from (3.15),
we have

−e(a)i = J(Je(a)i)

= J
(

∑

c

∑

j

J(a, c)ije(c)j
)

=
∑

c

∑

d

∑

j,k

J(a, c)ijJ(c, d)jke(d)k

and hence,

(3.17)
∑

c

∑

j

J(a, c)ijJ(c, d)jk = −δikδad

for 1 ≤ i, k ≤ 6 and 1 ≤ a, d ≤ t. Here, we shall calculate the components of
the Ricci ∗-tensor ρ∗. From (3.13), (3.15), (3.16) and (3.17), we have

ρ∗(e(a)i, e(a)j)(3.18)

= −
1

2

∑

c

∑

k

R(e(a)i, Je(a)j , e(c)k, Je(c)k)
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= −
1

2

∑

k

R(e(a)i, Je(a)j , e(a)k, Je(a)k)

= −
1

2

∑

k

R(a)

(

e(a)i,
∑

l

J(a, a)jle(a)l, e(a)k,
∑

u

J(a, a)kue(a)u
)

= −
1

2

∑

k,l,u

J(a, a)jlJ(a, a)kuR(a)(e(a)i, e(a)l, e(a)k, e(a)u)

= −
βa

2

∑

k,l,u

J(a, a)jlJ(a, a)ku{δlkδiu − δikδlu}

= −
βa

2
{−δji − δji}

= βaδij ,

ρ∗(e(a)i, e(b)j)(3.19)

= −
1

2

∑

c

∑

k

R(e(a)i, Je(b)j , e(c)k, Je(c)k)

= −
1

2

∑

k

R(e(a)i,
∑

l

J(b, a)jle(a)l, e(a)k,
∑

u

J(a, a)kue(a)u)

= −
1

2

∑

k,l,u

J(b, a)jlJ(a, a)kuR(a)(e(a)i, e(a)l, e(a)k, e(a)u)

= −
βa

2

∑

k,l,u

J(b, a)jlJ(a, a)ku{δlkδiu − δikδlu}

= −
βa

2
{J(b, a)jkJ(a, a)ki −

∑

l

J(b, a)jlJ(a, a)il}

= −
βa

2
{−δjiδba − δjiδba}

= βaδijδab,

ρ∗(e(a)i, Je(a)j)(3.20)

=
1

2

∑

c

∑

k

R(e(a)i, e(a)j , e(c)k, Je(c)k)

=
1

2

∑

k

R(e(a)i, e(a)j , e(a)k, Je(a)k)

=
1

2

∑

k,l

J(a, a)klR(a)(e(a)i, e(a)j , e(a)k, e(a)l)

=
βa

2

∑

k,l

J(a, a)kl{δjkδil − δikδjl}
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=
βa

2
{J(a, a)ji − J(a, a)ij}

= βaJ(a, a)ji,

ρ∗(e(a)i, Je(b)j)(3.21)

=
1

2

∑

c

∑

k

R(e(a)i, e(b)j , e(c)k, Je(c)k)

=
1

2

∑

c,d

∑

k,l

J(c, d)klR(e(a)i, e(b)j , e(c)k, e(d)l)

= − βaδabJ(a, b)ij ,

ρ∗(Je(a)i, e(a)j)(3.22)

= −
1

2

∑

c

∑

k

R(Je(a)i, Je(a)j , e(c)k, Je(c)k)

= −
1

2

∑

c

∑

k,l,u,v

J(a, c)ilJ(a, c)juJ(c, c)kvR(c)(e(c)l, e(c)u, e(c)k, e(c)v)

= −
1

2

∑

c

βc

∑

k,l,u,v

J(a, c)ilJ(a, c)juJ(c, c)kv{δukδlv − δlkδuv}

= −
1

2

∑

c

βc

{

∑

k,l

J(a, c)ilJ(a, c)jkJ(c, c)kl

−
∑

k,u

J(a, c)ikJ(a, c)juJ(c, c)ku
}

= −
1

2

∑

c

βc

{

−
∑

l

J(a, c)ilδjlδac +
∑

u

J(a, c)juδiuδac
}

=
1

2
βaJ(a, a)ij −

1

2
βaJ(a, a)ji

= βaJ(a, a)ij ,

ρ∗(Je(b)i, e(a)j)(3.23)

= −
1

2

∑

c

∑

k

R(Je(b)i, Je(a)j , e(c)k, Je(c)k)

= −
1

2

∑

c

∑

k,l,u,v

J(b, c)ilJ(a, c)juJ(c, c)kvR(c)(e(c)l, e(c)u, e(c)k, e(c)v)

= −
1

2

∑

c

βc

∑

k,l,u,v

J(b, c)ilJ(a, c)juJ(c, c)kv{δukδlv − δlkδuv}

= −
1

2

∑

c

βc

{

∑

k,l

J(b, c)ilJ(a, c)jkJ(c, c)kl
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−
∑

k,u

J(b, c)ikJ(a, c)juJ(c, c)ku
}

= −
1

2

∑

c

βc

{

−
∑

l

δjlδacJ(b, c)il +
∑

u

δiuδbcJ(a, c)ju
}

=
1

2
βaJ(b, a)ij −

1

2
βaJ(a, b)ji

= − βaJ(a, b)ij .

Thus, from (3.18) and (3.19), we see that ρ∗ is symmetric (and hence J-
invariant). Further, from (3.21), (3.23) and taking account of the symmetry of
ρ∗, we have J(a, b)ij = 0 for a 6= b. Hence

(3.24) J(Tpa
S6
a(βa)) = Tpa

S6
a(βa), a = 1, 2, . . . , t.

Therefore, from (3.24), we see that J induces an almost complex structure on
{(p1, . . . , pa−1, pa+1, . . . , pt)} × S6

a(βa) for each (p1, . . . , pa−1, pa+1, . . . , pt) ∈
S6
1(β1)× · · · × S6

a−1(βa−1)× S6
a+1(βa+1)× · · · × S6

t (βt). �

Lemma 3.5. Any orthogonal almost complex structure on a Riemannian prod-

uct of round 6-spheres is never integrable.

Proof. Let M = (M, 〈, 〉) be a Riemannian product of round 6-spheres S6
a(βa)

(a = 1, 2, . . . , t) and assume that M admits an orthogonal complex structure
denoted by J . Then taking account of the results in [4], it suffices to con-
sider the case when t ≥ 2. From Lemma 3.4, for each point (p1, . . . , pt−1) ∈
S6
1(β1) × · · · × S6

t−1(βt−1), J induces an orthogonal almost complex structure
on {(p1, . . . , pt−1)} × S6

t (βt). Then we may show that the induced orthogo-
nal almost complex structure is integrable by slightly modifying the proofs of
Lemmas 3.1 and 3.2. But this is a contradiction. �

4. Proof of Theorem A

In this section, we prove Theorem A based on the arguments in §3. Let
M = (M, 〈, 〉) be a Riemannian product of round 2-spheres, round 6-spheres,
and Riemannian product manifolds of a round 2-sphere and a round 4-sphere.
Assume that M admits an orthogonal complex structure and denote it by J .
Then from Lemma 3.3, we see that M is of the form M = M ′ × M ′′, where
M ′ is of the form M ′ = S2(α1) × · · · × S2(αs) and M ′′ is of the form M ′′ =
S6(β1)× · · · × S6(βt), respectively. Further, J induces an orthogonal complex
structure on {p′} ×M ′′ for each point p′ ∈ M ′. Therefore, from Lemmas 3.1
and 3.2 and by the uniqueness of the canonical complex structure on a round 2-
sphere, J is an orthogonal complex structure on M . Therefore, taking account
of Lemma 3.1, we see that J is a product of the canonical complex structures on
these round 2-spheres. The converse is evident by Remark 1. This completes
the proof of Theorem A.
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