DOI QR코드

DOI QR Code

Synthesis and characterization of hydrophobic and hydrophilic cellulose derivative by esterification

친수성과 소수성을 동시에 가지는 아세틸화 셀룰로스 에테르의 합성 및 특성 평가

  • Kim, Taehong (National Core Research Center for hybrid materials solution, Pusan National University) ;
  • Lee, Sangku (Green material research team Samsung Fine Chemicals CO., LTD.) ;
  • Son, Byunghee (Green material research team Samsung Fine Chemicals CO., LTD.) ;
  • Paik, Hyun-Jjong (Department of Polymer Science and Engineering, Pusan National University) ;
  • Yoon, Sanghyeon (School of Materials Science & Engineering, Pusan National University) ;
  • Lee, Heesoo (School of Materials Science & Engineering, Pusan National University)
  • 김태홍 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 이상구 (삼성정밀화학 그린소재연구팀) ;
  • 손병희 (삼성정밀화학 그린소재연구팀) ;
  • 백현종 (부산대학교 고분자공학과) ;
  • 윤상현 (부산대학교 재료공학부) ;
  • 이희수 (부산대학교 재료공학부)
  • Received : 2012.11.21
  • Accepted : 2012.12.14
  • Published : 2013.02.28

Abstract

Acetylated Cellulose Ether (ACE), cellulose-based amphiphilic polymer with hydrophilic and hydrophobic, was synthesized and investigated in terms of its solubility and wettability for organic solvents and water. Acetyl group was substituted to the cellulose ether in a hydrophilic polymer by esterification. As a result of FT-IR, the peak corresponding to the hydroxyl group decreased and carboxyl acid peak increased with increasing reaction time and temperature, which signified the increase in the degree of acetylation of the ACE. There were similar thermal decomposition behaviors before and after esterification reaction until $800^{\circ}C$ so that the reaction occurred without significant structural changes of cellulose backbones. The solubility parameter of the ACE had a range of 18.5~26.4, and its viscosity and turbidity were controlled according to the solubility parameter of organic solvents. The ACE showed the hydrophilicity because the contact angle of the ACE was higher than the cellulose ether. These results confirmed that the ACE had the hydrophobicity and hydrophilicity due to the ether which was glucosidic bonding between the glucose units and un-reacted hydroxyl functional groups in the ACE.

친수성과 소수성을 동시에 갖는 아세틸화 셀룰로스 에테르(ACE)를 합성하여 유기용매 용해도 및 거동 평가와 물에 대한 젖음성을 평가하였다. 친수성 고분자인 셀룰로스 에테르에 에스테르화 반응을 통해 아세틸기를 치환시켰으며, FT-IR 분석결과 수산화기의 감소와 카르복실산의 증가를 통해 아세틸화 반응을 확인하였다. 열분해 거동 분석결과 $800^{\circ}C$까지 셀룰로스와 셀룰로스 에테르와 유사한 분해거동을 보여 셀룰로스 주사슬의 구조변화 없이 치환 반응이 일어난 것을 확인하였다. 18.5~26.4의 solubility parameter의 값을 예상할 수 있는 ACE는 유기용매의 solubility parameter 값에 의해 탁도와 점도가 결정되었다. 합성한 ACE의 접촉각은 셀룰로스 에테르 보다 높은 값을 보였으나 시간에 따른 접촉각 변화는 유사한 경향을 보였다. 이는 치환된 아세틸기에 의한 소수성, 무수 글루코스 단위체 내의 반응하지 않고 잔존하는 수산화기에 의해 친수성을 동시에 가지는 것을 알 수 있었다.

Keywords

References

  1. J. Pourchez, A. Govin, P. Grosseau, R. Guyonnet, B. Guilhot and B. Ruot, "Alkaline stability of cellulose ethers and impact of their degradation products on cement hydration", Cem. Concr. Res. 36 (2006) 1252. https://doi.org/10.1016/j.cemconres.2006.03.028
  2. K.L. Krumel and T.A. Lindsay, "Nonionic cellulose ethers", Food Science and Technology 30 (1976) 36.
  3. J. Pourchez, A. Peschard, P. Grosseau, R. Guyonnet, B. Guilhot and F. Vallée, "HPMC and HEMC influence on cement hydration", Cem. Concr. Res. 36 (2006) 288. https://doi.org/10.1016/j.cemconres.2005.08.003
  4. S.G. Croll and R.L. Kleinlein, "Influence of cellulose ethers on coatings performance", in Water-Soluble Polymers, J. E. Glass, Editor, American Chemical Society 213 (1986) 333.
  5. M.L.R. Medina and V. Kumar, "Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients", Int. J. Pharm. 337 (2007) 202. https://doi.org/10.1016/j.ijpharm.2007.01.008
  6. L. Segal, J.J. Creely, A.E. Martin Jr. and C.M. Conrad, "An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer", Text. Res. J. 29 (1959) 786. https://doi.org/10.1177/004051755902901003
  7. S.K. Park, J.O. Baker, M.E. Himmel, P.A. Parilla and D.K. Johnson, "Research Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance", Biotechnol. Biofuels 3 (2010) 1. https://doi.org/10.1186/1754-6834-3-1
  8. D.H. Kim and B.S. Min, "Melt-solid interface and segregation in horizontal Bridgman growth using 2- and 3- dimensional pseudo-steady-state model", J. of Korean Association of Crystal Growth 5 (1995) 306.
  9. C.S. Lim and Hubertus Nickel, "Interface chemistry of SiC/Co reaction", J. of Korean Association of Crystal Growth 5 (1995) 109.
  10. N. Yamato, K. Kimura, T. Miyoshi and Y. Watanabe, "Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials", J. Membr. Sci. 280 (2006) 911. https://doi.org/10.1016/j.memsci.2006.03.009
  11. S. Boributh, A. Chanachai and R. Jiraratananon, "Modification of PVDF membrane by chitosan solution for reducing protein fouling", J. Membr. Sci. 342 (2009) 97. https://doi.org/10.1016/j.memsci.2009.06.022
  12. N.A. Hashim, F. Liu and K. Li, "A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer", J. Membr. Sci. 345 (2009) 134. https://doi.org/10.1016/j.memsci.2009.08.032