DOI QR코드

DOI QR Code

A 2H solid-state NMR study on the lipid phase change in the presence of an antimicrobial peptide

항균성 펩타이드와 혼합된 인지질 분자의 상 변화에 대한 고체 중수소 핵자기 공명 연구

  • 최형근 (한남대학교 화학과) ;
  • 김철 (한남대학교 화학과)
  • Received : 2013.01.16
  • Accepted : 2013.02.05
  • Published : 2013.02.25

Abstract

The activity of an antimicrobial peptide, protegrin-1, on the well-aligned lipid bilayer deposited on a thin coverglass plate was investigated by $^2H$ solid-state NMR spectroscopy. Orientational distribution and molecular motion in the lipid bilayer were determined from $^2H$ solid-state NMR spectrum. Reorientational motion of lipid molecules in the vacuum-dried state was found to be small but their orientational distribution was not able to be determined. As storage times were longer, the order of the alignment of lipid molecules in the lipid bilayer and percentages involved in the toroidal pore structures increased. We found that much longer time is required to get the equilibrium state of the peptide-lipid mixture under our experimental condition for investigating the action of the antimicrobial peptide like protegrin-1 on the lipid bilayers deposited on the thin coverglass plates.

얇은 유리판 위에 잘 정렬된 인지질 이중막에 작용하는 항균성 펩타이드 protegrin-1의 활성작용을 고체 $^2H$ 핵자기 공명 분광법을 이용하여 조사하였다. 수화 전후에 있어서 인지질 분자의 배향분포와 그 운동성을 고체 $^2H$ 핵자기 공명 스펙트럼을 통하여 확인하였다. 진공으로 건조된 상태에서는 인지질 분자의 운동성이 작다는 사실 외에는 인지질 분자들의 배향분포에 대한 정확한 상태를 알 수 없었다. 그러나 시료가 수화된 이후에는 시간이 지남에 따라 인지질 분자들이 잘 정렬되어 간다는 것과 원환체 기공이 형성되어 간다는 것을 확인할 수 있었다. Protegrin-1과 같은 항균성 펩타이드에 의한 인지질 이중막 변화를 본 연구논문에서 사용한 방법으로 확인하기 위해서는 상당히 긴 반응시간이 필요하다는 것을 확인하였다.

Keywords

References

  1. H. Steiner, D. Hultmark, A. Engstrom, H. Bennich and H. G. Boman, Nature, 292(5820), 246-248 (1981). https://doi.org/10.1038/292246a0
  2. J. Y. Lee, A. Boman, C. X. Sun, M. Andersson, H. Jornvall, V. Mutt and H. G. Boman, Proc. Natl. Acad. Sci. U. S. A., 86(23), 9159-9162 (1989). https://doi.org/10.1073/pnas.86.23.9159
  3. R. Latorre and O. Alvarez, Physiol. Rev., 61(1), 77-150 (1981).
  4. M. Zasloff, Proc. Natl. Acad. Sci. U. S. A., 84(15), 5449-5453 (1987). https://doi.org/10.1073/pnas.84.15.5449
  5. P. M. Hwang and H. J. Vogel, Biochem. Cell Biol., 76(2/3), 235-246 (1998). https://doi.org/10.1139/o98-026
  6. K. J. Hallock, D. K. Lee and A. Ramamoorthy, Biophys. J., 84(5), 3052-3060 (2003). https://doi.org/10.1016/S0006-3495(03)70031-9
  7. J. J. Buffy, A. J. Waring and M. Hong, J. Am. Chem. Soc., 127(12), 4477-4483 (2005). https://doi.org/10.1021/ja043621r
  8. M. R. Yeaman and N. Y. Yount, Pharmacol. Rev., 55(1), 27-55 (2003). https://doi.org/10.1124/pr.55.1.2
  9. R. Mani, A. J. Waring, R. I. Lehrer and M. Hong, Biochim. Biophys. Acta, Biomembr., 1716(1), 11-18 (2005). https://doi.org/10.1016/j.bbamem.2005.08.008
  10. O. Toke, Biopolymers, 80(6), 717-735 (2005). https://doi.org/10.1002/bip.20286
  11. Y. Bai, S. Liu, P. Jiang, L. Zhou, J. Li, C. Tang, C. Verma, Y. Mu, R. W. Beuerman and K. Pervushin, Biochemistry, 48(30), 7229-7239 (2009). https://doi.org/10.1021/bi900670d
  12. A. Pokorny and P. F. F. Almeida, Biochemistry, 44(27), 9538-9544 (2005). https://doi.org/10.1021/bi0506371
  13. K. Matsuzaki, O. Murase, N. Fujii and K. Miyajima, Biochemistry, 34(19), 6521-6526 (1995). https://doi.org/10.1021/bi00019a033
  14. K. Matsuzaki, K. Sugishita, N. Ishibe, M. Ueha, S. Nakata, K. Miyajima and R. M. Epand, Biochemistry, 37(34), 11856-11863 (1998). https://doi.org/10.1021/bi980539y
  15. J.-A. Richard, I. Kelly, D. Marion, M. Pezolet and M. Auger, Biophys. J., 83(4), 2074-2083 (2002). https://doi.org/10.1016/S0006-3495(02)73968-4
  16. Y. Herasimenka, M. Benincasa, M. Mattiuzzo, P. Cescutti, R. Gennaro and R. Rizzo, Peptides, 26(7), 1127- 1132 (2005). https://doi.org/10.1016/j.peptides.2005.01.020
  17. V. N. Kokryakov, S. S. Harwig, E. A. Panyutich, A. A. Shevchenko, G. M. Aleshina, O. V. Shamova, H. A. Korneva and R. I. Lehrer, FEBS Lett., 327(2), 231-236 (1993). https://doi.org/10.1016/0014-5793(93)80175-T
  18. R. L. Fahrner, T. Dieckmann, S. S. L. Harwig, R. I. Lehrer, D. Eisenberg and J. Feigon, Chem. Biol., 3(7), 543-550 (1996). https://doi.org/10.1016/S1074-5521(96)90145-3
  19. H. Jang, B. Ma and R. Nussinov, BMC Struct Biol, 7, 21 (2007). https://doi.org/10.1186/1472-6807-7-21
  20. L. Yang, T. M. Weiss, R. I. Lehrer and H. W. Huang, Biophys. J., 79(4), 2002-2009 (2000). https://doi.org/10.1016/S0006-3495(00)76448-4
  21. S. Yamaguchi, T. Hong, A. Waring, R. I. Lehrer and M. Hong, Biochemistry, 41(31), 9852-9862 (2002). https://doi.org/10.1021/bi0257991
  22. J. J. Buffy, A. J. Waring, R. I. Lehrer and M. Hong, Biochemistry, 42(46), 13725-13734 (2003). https://doi.org/10.1021/bi035187w
  23. J. J. Buffy, T. Hong, S. Yamaguchi, A. J. Waring, R. I. Lehrer and M. Hong, Biophys. J., 85(4), 2363-2373 (2003). https://doi.org/10.1016/S0006-3495(03)74660-8
  24. R. Mani, J. J. Buffy, A. J. Waring, R. I. Lehrer and M. Hong, Biochemistry, 43(43), 13839-13848 (2004). https://doi.org/10.1021/bi048650t
  25. C. Kim, J. Spano, E. K. Park and S. Wi, Biochim. Biophys. Acta, 1788(7), 1482-1496 (2009). https://doi.org/10.1016/j.bbamem.2009.04.017
  26. B. Bechinger, Biochim. Biophys. Acta, Biomembr., 1712(1), 101-108 (2005). https://doi.org/10.1016/j.bbamem.2005.03.003
  27. R. Mani, M. Tang, X. Wu, J. J. Buffy, A. J. Waring, M. A. Sherman and M. Hong, Biochemistry, 45(27), 8341- 8349 (2006). https://doi.org/10.1021/bi060305b
  28. J. J. Buffy, M. J. McCormick, S. Wi, A. Waring, R. I. Lehrer and M. Hong, Biochemistry, 43(30), 9800-9812 (2004). https://doi.org/10.1021/bi036243w
  29. S. Wi and C. Kim, J. Phys. Chem. B, 112(36), 11402- 11414 (2008). https://doi.org/10.1021/jp801825k
  30. K. J. L. Hallock, D.-K. and Ramamoorthy, A., Biophys. J., 84, 3052-3060 (2003). https://doi.org/10.1016/S0006-3495(03)70031-9
  31. J. Butterworth, Proceedings of the Physical Soc., 86, 297-304 (1965). https://doi.org/10.1088/0370-1328/86/2/306
  32. C. Kim, Bull. Korean Chem. Soc., 31(2), 372-378 (2010). https://doi.org/10.5012/bkcs.2010.31.02.372
  33. C. Kim, J. Korean Chem. Soc., 54(2), 183-191 (2010). https://doi.org/10.5012/jkcs.2010.54.02.183
  34. C. Kim, Anal. Sci. Technol., 24(6), 460-466 (2011). https://doi.org/10.5806/AST.2011.24.6.460
  35. L. S. Vermeer, B. L. de Groot, V. Reat, A. Milon and J. Czaplicki, Eur. Biophys. J., 36(8), 919-931 (2007). https://doi.org/10.1007/s00249-007-0192-9