DOI QR코드

DOI QR Code

Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites

Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가

  • Received : 2012.12.13
  • Accepted : 2013.01.16
  • Published : 2013.02.25

Abstract

This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by $TiO_2$-hollow sphere prepared for use in sensor applications or fuel cells. The $TiO_2$-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the $Pt^{4+}$ and $Ru^{3+}$ ions onto $TiO_2$-hollow sphere ($Pt-Ru@TiO_2-H$). The prepared $Pt-Ru@TiO_2-H$ nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol, methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the $Pt-Ru@TiO_2-H$ nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto $TiO_2$-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.

이 논문은 센서 및 연료전지에 사용할 수 있는 $Pt-Ru@TiO_2-H$ 나노구조체촉매의 제조 및 전기화학적 촉매의 특성에 대한 것이다. 이 $Pt-Ru@TiO_2-H$ 나노구조체촉매는 주형제인 폴리스틸렌볼(PSB)을 제조하고, 이 주형제의 표면에 졸-겔 반응을 통해 $TiO_2$를 코팅한 후, $Pt^{4+}$$Ru^{3+}$의 환원에 의해 제조하였다. 제조된, $Pt-Ru@TiO_2-H$ 나노구조체촉매는 전자투과현미경(TEM), X-선 회절(XRD)와 원소분석에 의해 특성평가 하였고, $Pt-Ru@TiO_2-H$의 전기화학적 촉매특성은 에탄올, 메탄올, 도파민, 아스크로브 산, 프로말린과 글루코오즈의 산화-환원 능력에 의해 평가 하였다. 이 $Pt-Ru@TiO_2-H$ 나노구조체촉매는 바이오분자에 대해 전기화학적촉매 특성을 나타내어, 연료전지 전극 또는 비효소바이오센서에 사용 될 것으로 기대된다.

Keywords

References

  1. G. S. Attard, P. N. Bartlett, N. R. B. Colemen, J. M. Elliott, J. R. Owen and J. H. Wang, Sci., 278, 838-840 (1997). https://doi.org/10.1126/science.278.5339.838
  2. F. Leroux, B. E. Koene, L. F. Nazar, J. Electrochem. Soc., 143, L181-L183 (1996). https://doi.org/10.1149/1.1837078
  3. J. Wang and L. Agnes, Anal. Chem., 64, 456-459 (1992). https://doi.org/10.1021/ac00028a023
  4. X. H. Xia, T. Iwasita, F. Ge and W. Vielstich, Electrochim. Acta, 41, 711-718 (1996). https://doi.org/10.1016/0013-4686(95)00360-6
  5. Z. Liu, X. Y. Ling, X. Su, J. Y. Lee and L. M. Gan, J. Power Source, 149, 1-7 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.009
  6. S. J. Park, T. D. Chung and H. C. Kim, Anal. Chem., 75, 3046-3049 (2003). https://doi.org/10.1021/ac0263465
  7. Y. Y. Song, D. Zhang, W. Gao and X. H. Xia, Chem. Eur. J. 11, 2177-2182 (2005).
  8. A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh and N. Alonso-Vante, J. Phys. Chem. B, 111, 10329- 10333 (2007). https://doi.org/10.1021/jp0720183
  9. H. F. Cui, J. S. Ye, W. D. Zhang, C. M. Li, J. H. T. Luong and F. S. Sheu, Anal. Chim. Acta, 594, 175-183 (2007). https://doi.org/10.1016/j.aca.2007.05.047
  10. Y. Bai, Y. Sun and C. Sun, Biosens. Bioelectron., 24, 579-585 (2008). https://doi.org/10.1016/j.bios.2008.06.003
  11. J. Wang and D. F. Thomas, Chen, A. Anal. Chem., 80, 997-1004 (2008). https://doi.org/10.1021/ac701790z
  12. Y. Sun, H. Buck and T. E. Mallouk, Anal. Chem., 73, 1599-1604 (2001). https://doi.org/10.1021/ac0015117
  13. F. Xiao, F. Zhao, Y. Zhang, G. Guo and B. Zeng, J. Phys. Chem. C, 113, 846-849 (2009).
  14. H. F. Cui, J. S. Ye, X. Liu, W. D. Zhang and F. S. Sheu, Nanotechnology, 17, 2334-2339 (2006). https://doi.org/10.1088/0957-4484/17/9/043
  15. L. Qian and X. Yang, J. Phys. Chem. B, 110, 16672-16678 (2006). https://doi.org/10.1021/jp063302h
  16. X. M. Ren, P. Zelenary, S. Thomas, J. Davey and S. Gottesfeld, J. Power Sources, 86, 111-116 (2000). https://doi.org/10.1016/S0378-7753(99)00407-3
  17. Y. Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski and E. Oldfield, J. Am. Chem. Soc., 124, 468-473 (2002). https://doi.org/10.1021/ja011729q
  18. C. Bock, C. Paquet, M. Couillard, G. A. Gotton and B. R. MacDougall, J. Am. Chem. Soc., 126, 8028-8037 (2004). https://doi.org/10.1021/ja0495819
  19. K. Park, Y. Sung, S. Han, Y. Yun and T. Hyeon, J. Phys. Chem. B, 108, 939-944 (2004). https://doi.org/10.1021/jp0368031
  20. Z. Liu, J. Y. Lee, W. Chen, M. Han and L. M. Gan, Langmuir, 20, 181-187 (2004). https://doi.org/10.1021/la035204i
  21. Z. Liu, L. M. Gan, L. Hong, W. Chen and J. Y. Lee, J. Power Source, 139, 73-78 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.012
  22. G. Chai, S. B. Yoon, S. Kang, J.-H. Choi, Y.-E. Sung, Y.-S. Ahn, H.-S. Kim and J.-S. Yu, Electrochim. Acta, 50, 823-826 (2004). https://doi.org/10.1016/j.electacta.2003.11.041
  23. D. F. Silva, A. O. Neto, E. S. Pino, M. Linardi and E. V. Spinace, J. Power Source, 170, 303-307 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.052
  24. W. Chen, J. Y. Lee and Z. Liu, Mater. Lett., 58, 3166- 3169 (2004). https://doi.org/10.1016/j.matlet.2004.06.008
  25. Z. Liu, J. Y. Lee, W. Chen, M. Han and L. M. Gan, Langmuir, 20, 181-187 (2004). https://doi.org/10.1021/la035204i
  26. K.-D. Seo, S.-D. Oh, S.-H. Choi, S.-H. Kim, H. G. Park and Y. P. Zhang, Colloids Surf. A, 313, 393-397 (2008). https://doi.org/10.1016/j.colsurfa.2007.05.085
  27. H.-B. Bae, J.-H. Ryu, B.-S. Byun, S.-H. Choi, S.-H. Kim and C.-G. Hwang, Adv. Mater. Res., 47-50, 1478-1481 (2008). https://doi.org/10.4028/www.scientific.net/AMR.47-50.1478
  28. H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 161, 893-900 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.014
  29. N. Zheng and G. D. Stuck, A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc., 128, 14278-12480 (2006). https://doi.org/10.1021/ja0659929
  30. H. Einaga and M. Harada, Langmuir, 21, 2578-2584 (2005). https://doi.org/10.1021/la0475730
  31. J. Tian, G. Sun, L. Jiang, S. Yan, Z. Mao and Q. Xin, Electrochem. Commun., 8, 1439-1444 (2006). https://doi.org/10.1016/j.elecom.2006.05.033
  32. J. H. Pan, X. W. Zhang, A. J. Du, D. D. Sun and J. O. Leckie, J. Am. Chem. Soc., 130, 11256-11257 (2008). https://doi.org/10.1021/ja803582m
  33. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Adv. Mater., 20, 195-199 (2008). https://doi.org/10.1002/adma.200700840
  34. S. S. K. Kamal, P. K. Sahoo, M. Premkumar, N. V. R. Rao, T. J. Kumar, B. Sreedhar, A. K. Singh, S. Ram and K. C. Sekhar, Chem. J. Alloys Compd., 474, 214-218 (2009). https://doi.org/10.1016/j.jallcom.2008.06.160
  35. J. G. Yu, W. Liu and H. G. Yu, Cryst. Growth Des., 8, 930-934 (2004).
  36. Y. Wang, F. B. Su, J. Y. Lee and X. S. Zhao, Chem. Mater., 18, 1347-1353 (2009).
  37. C. H. Chang, P. S. Son, J. A. Yoon and S. H. Choi, J. Nanomater., 2010, 1-13 (2010).
  38. J. H. Chae, S. H. Jung and S. H. Choi, Current Applied Physics, 10, S97-105 (2010). https://doi.org/10.1016/j.cap.2009.11.051
  39. F. A. Cotton; Wildinson, G. Advanced Inorganic Chemistry; John Wiley & Sons Inc.: New York, 1988.
  40. B. Yang, Q. Lu, Y. Wang, L. Zhiang, J. Lu and P. Liu, Chem. Mater., 15, 3552-3579 (2003). https://doi.org/10.1021/cm034306r
  41. D. R. Rolison, P. L. Hagans, K. E. Swider and J. W. Long, Langmuir, 15, 774-779 (1999). https://doi.org/10.1021/la9807863
  42. S. Song, Q. Gao, K. Xia and L. Gao, Electroanalysis, 20, 1159-1166 (2008). https://doi.org/10.1002/elan.200804210

Cited by

  1. Electrochemical gas sensor based on Pt-Ru-Mo/MWNT electrocatalysts and vinyl ionic liquids as electrolyte vol.28, pp.1, 2015, https://doi.org/10.5806/AST.2015.28.1.8
  2. A novel non-enzymatic glucose sensor based on Pt 3 Ru 1 alloy nanoparticles with high density of surface defects vol.80, 2016, https://doi.org/10.1016/j.bios.2016.01.056