DOI QR코드

DOI QR Code

Different Impacts of the Two Phases of El Niño on Variability of Warm Season Rainfall and Frequency of Extreme Events over the Han River Basin

서로 다른 형태의 엘니뇨에 따른 한강유역의 여름철 강우량과 극치강우의 변동특성 분석

  • Yoon, Sun-Kwon (Climate Change Research Team, Climate Research Department, APEC Climate Center) ;
  • Kim, Jong-Suk (Department of Civil Engineering, The University of Seoul) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University)
  • 윤선권 (APEC 기후센터 연구본부 기후변화연구팀) ;
  • 김종석 (서울시립대학교 토목공학과) ;
  • 권현한 (전북대학교 공과대학 토목공학과)
  • Received : 2012.06.07
  • Accepted : 2012.10.04
  • Published : 2013.02.28

Abstract

This study investigated impacts of the two different types of El Ni$\tilde{n}$o on summer rainfall (June-September) in the Han River and its sub-basins. The patterns of rainfall anomalies show a remarkable difference between conventional El Ni$\tilde{n}$o and El Ni$\tilde{n}$o Modoki years. During conventional El Ni$\tilde{n}$o years, it was found that the Han River basins show decreases in the seasonal rainfall totals with high variations (CV=0.4). In contrast, during El Ni$\tilde{n}$o Modoki years, distinct positive anomalies appear in the Han River basin with a relatively small variation (CV=0.23). In addition, 11 out of 30 sub-basins show significant above-normal rainfall in southern part of the Han River Basin. For El Ni$\tilde{n}$o Modoki years, the number of heavy rainy days exceeding 30 mm/day and 50 mm/day were 9.9-day and 5.4-day, respectively. Consequently, this diagnostic study confirmed that El Ni$\tilde{n}$o Modoki has significant impacts on the variability of summer rainfall over the Han River Basin. We expect the results presented here provide useful information for the stability of the regional water supply system, especially for basins like the Han River Basin showing relatively high variability in seasonal rainfall.

본 연구에서는 전형적인 엘니뇨와 새로운 형태의 엘니뇨 Modoki에 따른 한강유역의 여름철(6~9월) 강우량의 특성 변화를 분석하였다. 전형적인 엘니뇨 시기에는 대체로 여름철 강우량이 감소하였으며, 강우의 변동성도 비교적 크게 나타났다(CV=0.40). 반면에 엘니뇨 Modoki 시기에는 한강 대부분 유역에서 평년보다 강우가 증가하는 경향을 보였으며, 여름철 강우의 변동성은 작은 것으로 분석되었다(CV=0.23). 엘니뇨 Modoki 시기에는 한강 남부의 11개 중권역에서 통계적으로 유의한 강우의 증가를 보였고, 30mm/day와 50mm/day를 초과하는 중호우의 강우발생일은 각각 9.9일과 5.4일로 나타났으며, 전형적인 엘니뇨 시기보다 백분위 편차가 각각 17.74%, 50.94% 큰 것으로 분석되었다. 본 연구에서는 새로운 형태의 엘니뇨 Modoki가 전형적인 패턴의 엘니뇨보다 한강유역의 여름철 수자원 변동에 민감하게 영향을 주고 있음을 확인하였으며, 향후 수자원의 계절적 변동과 불확실성이 큰 지역에서 안정적인 수자원 확보를 위한 기초자료로 활용이 가능하리라 사료된다.

Keywords

References

  1. Ashok, K., Behera, S.K., Rao, S.A., Weng, H., and Yamagata, T. (2007). "El Nino Modoki and its possible teleconnection." J. Geophys. Res. 112, doi:10.1029/2006JC003798.
  2. Ashok, K., and Yamagata, T. (2009). "Climate Change: The El Niño with a difference." Nature, doi:10.1038/461481a.
  3. Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial pacific. MonthlyWeather Review, Vol. 97, No. 3, pp. 163-172.
  4. Bowman, A.W., and Azzalini, A. (1997). "Applied smoothing techniques for data analysis." London: Oxford University Press.
  5. Chang, C-W.J., Hsu, H.H., Wu, C.R., and Sheu, W.J. (2008). "Interannual mode of sea level in the South China Sea and the roles of El Nino and El Nino Modoki." Geophys. Res. Lett. 35:L03601. doi:10.1029/2007GL032562.
  6. Chu, P.S. (1995). "Hawaii rainfall anmalies and El Nino." J. Climate, Vol. 8, pp. 1697-1703. https://doi.org/10.1175/1520-0442(1995)008<1697:HRAAEN>2.0.CO;2
  7. Feng, J., Chen, W., Tam, C.Y., and Zhou, W. (2010). "Different impacts of El Nino and El Nino Modoki on China rainfall in the decaying phases." International Journal of Climatology, doi:10.1002/joc.2217.
  8. Gershunov, A., Barnett, T.B., and Cayan, D.R. (1999). "North Pacific Interdecadal Oscillations Seen as Factor in ENSO-related North American Climate Anomalies." Eos. Transactions. American Geophysical Union, doi: 10.1029/99EO00019.
  9. GPCP (Global Precipitation Climatology Project) (2012). URL: http://www.esrl.noaa.gov/psd/cgi-bin/data/ composites/printpage.pl. accessed March 2012.
  10. Horel, J.D., and Wallace, J.M. (1981). "Planetary-scale atmospheric phenomena associated with the Southern Oscillation." Monthly Weather Review, Vol. 109, pp. 813-829. https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
  11. Kao, H.Y., and Yu, J.Y. (2009). "Contrasting Eastern- Pacific and Central-Pacific Types of ENSO." Journal of Climate, Vol. 22, pp. 615-632 doi:10.1175/2008JCLI2309.1.
  12. Kiladis, G.N., and Diaz, H.F. (1989). "Global climatic anomalies associated with extremes in the Southern Oscillation." J. Climate, Vol. 2, pp. 1069-1090. https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2
  13. Kim, H., Webster, P.J., and Curry, J.A.(2009). "Impact of shifting patterns of Pacific Ocean warming on the frequency and tracks of North Atlantic tropical cyclones." Science, Vol. 325, pp. 77-80. https://doi.org/10.1126/science.1174062
  14. Kim, J.S., Jain, S., and Yoon, S.K. (2012). "Warm season streamflow variability in the Korean Han River Basin: links with atmospheric teleconnections." International Journal of Climatology, doi:10.1002/joc.2290.
  15. Kug, J.S., Jin, F.F., and An, S.I. (2009). "Two types of El Nino events: Cold tongue El Nino and warm pool El Nino." Journal of Climate, Vol. 22, pp. 1499-1515, doi:10.1175/2008JCLI2624.1.
  16. Kwon, H.H., and Moon, Y.L. (2005). "Independent component analysis of Nino3.4 sea surface temperature and summer seasonal rainfall." Journal of Korea Water Resources Association, Vol. 38, No. 12, pp. 985-994. https://doi.org/10.3741/JKWRA.2005.38.12.985
  17. Lall, U., Moon, Y.I., and Bosworth, K. (1993). "Kernel flood frequency estimators: bandwidth selection and kernel choice." Water Resources Research, Vol. 29, No. 4, pp. 1003-1015. https://doi.org/10.1029/92WR02466
  18. McPhaden, M.J., Zebiak, S.E., and Glantz, M.H. (2006). "ENSO as an Integrating Concept in Earth Science." Science, Vol. 314, pp. 1740-1745. https://doi.org/10.1126/science.1132588
  19. Monteverdi, J., and Null, J. (1997). El Nino and California Rainfall, National Oceanic and Atmospheric Administration, Western Region Technical Attachment No. 97-37. http://tornado.sfsu.edu/geosciences/elnino/ elnino.html, accessed February, 2005.
  20. Moon, Y.I., and Lall, U. (1994). "Kernel quantile function estimator for flood frequency analysis." Water Resources Research, Vol. 30, No. 11, pp. 3095-3103. https://doi.org/10.1029/94WR01217
  21. Na, H., Jang, B.G., Choi, W.M., and Kim, K.Y. (2011) "Statistical Simulations of the Future 50-year Statistics of Cold-Tongue El Nino and Warm-Pool El Nino." Asia-Pacific J. Atmos. Sci., Vol. 47, No. 3, pp. 223-233. https://doi.org/10.1007/s13143-011-0011-1
  22. Nicholls, N., and Wong, K.K. (1990). "Dependence of rainfall variability on mean latitude and the Southern Oscillation." J. Climate, Vol. 3, pp. 163-170. https://doi.org/10.1175/1520-0442(1990)003<0163:DORVOM>2.0.CO;2
  23. NOAA (national weather service climate prediction center) (2012). URL:http://www.cpc.ncep.noaa.gov/data/ indices/. accessed March 2012.
  24. Pradhan, P.K., Preethi, B., Ashok, K., Krishna, R., and Sahai, A.K. (2011). "Modoki, Indian Ocean Dipole, and western North Pacific typhoons: Possible implications for extreme events." Journal of Geophysical Research, 116D18108, doi:10.1029/2011JD015666.
  25. Pizarro, G., and Lall, U. (2002). "El Nino-Induced Flooding in the US West: What Can We Expect?." Eos. Transactions. American Geophysical Union, Vol. 83, pp. 349- 352.
  26. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., and Kaplan, A. (2003). "Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century." Journal of Geophysical Research, doi:10.1029/2002JD002670.
  27. Ren, H.L., and Jin, F.F. (2011). "Nino indices for two types of ENSO." Geophysical Research Letters, Vol. 38, L04704, doi:10.1029/2010GL046031.
  28. Schonher, T., and Nicholson, S.E. (1989). "The Relationship between California Rainfall and ENSO Events." Journal of Climate, Vol. 2, pp. 1258-1269. https://doi.org/10.1175/1520-0442(1989)002<1258:TRBCRA>2.0.CO;2
  29. Shin, H.S., Ahn, J.H., and Yoon, Y.N. (1999). "Analysis of spatial-temporal relationship between El Nino and South Korean precipitation." Journal of Korean Society of Civil Engineers, Vol. 19, No. II-1, pp. 1-12.
  30. Trenberth, K.E. (1997). "The Definition of El Nino." National Center for Atmospheric Research, Bulletin of the American Meteorological Society, pp. 2771- 2777.
  31. WAMIS (water management information system) (2012). URL: http://wamis.go.kr/eng/. accessed March 2012.
  32. Weng, H., Ashok, K., Behera, S., Rao, S., and Yamagata, T. (2007). "Impacts of recent El Niño Modoki on dry/ wet conditions in the Pacific rim during boreal summer." Climate Dynamics, Vol. 29, pp. 113-129. https://doi.org/10.1007/s00382-007-0234-0
  33. Yeh, S.W., Kug, J.S. Dewitte, B., Kwon, M.H., Kirtman, B.P., and Jin, F.F. (2009). "El Nino in a changing climate." Nature, Vol. 461, pp. 511-514, doi:10.1038/nature08316.
  34. Yoon, J.H., and Yeh, S.W. (2009). "Study of the Relationship between the East Asian Marginal SST and the Two Different Types of El Nino." Ocean and Polar Research, Vol. 31, No. 1, pp. 1-61. https://doi.org/10.4217/OPR.2009.31.1.001

Cited by

  1. Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region vol.36, pp.1, 2016, https://doi.org/10.12652/Ksce.2016.36.1.0049