DOI QR코드

DOI QR Code

Influence of Different A Elements on Bonding and Elastic Properties of Zr2AC (A = Al, Si, P, S): A Theoretical Investigation

  • Received : 2012.10.24
  • Accepted : 2012.12.05
  • Published : 2013.02.20

Abstract

Extended H$\ddot{u}$ckel tight-binding band structure calculations are used to address the chemical bonding and elastic properties of $Zr_2AC$ (A=Al, Si, P, and S). Elastic properties are interpreted by analyzing the density of states and the crystal orbital overlap population for the respective phases. Our results show that the bulk modulus of these ternary compounds is determined by the strength of Zr-A bonds.

Keywords

References

  1. Barsoum, M. W. Prog. Solid State Chem. 2000, 28, 201. https://doi.org/10.1016/S0079-6786(00)00006-6
  2. Finkel, P.; Barsoum, M. W.; El-Raghy, T. J. Appl. Phys. 2000, 87, 1701. https://doi.org/10.1063/1.372080
  3. Hettinger, J. H.; Lofland, S. E.; Finkel, P.; Meehan, T.; Palma, J.; Harrel, K. Phys. Rev. B 2005, 72, 115120. https://doi.org/10.1103/PhysRevB.72.115120
  4. Manoun, B.; Zhang, F. X.; Saxena, S. K.; El-Raghy, T.; Barsoum, M. W. J. Phys. Chem. Solids 2006, 67, 2091. https://doi.org/10.1016/j.jpcs.2006.05.051
  5. Drulis, M. K.; Drulis, H.; Hackemer, A. E.; Ganguly, A.; El- Raghy, T.; Barsoum, M. W. J. Alloys. Compd. 2007, 433, 59. https://doi.org/10.1016/j.jallcom.2006.06.092
  6. Hu, C. F.; Zhang, J.; Wang, J.; Li, F. G.; Wang, J. Y.; Zhou, Y. C. J. Am. Ceram. Soc. 2008, 91, 636. https://doi.org/10.1111/j.1551-2916.2007.02136.x
  7. Kumar, R. S.; Rekhi, S.; Cornelius, A. L.; Barsoum, M. W. Appl. Phys. Lett. 2005, 86, 111904. https://doi.org/10.1063/1.1884261
  8. Barsoum, M. W.; El-Raghy, T. Am. Sci. 2001, 89, 334. https://doi.org/10.1511/2001.28.736
  9. Freer, R., Ed. The Physics and Chemistry of Carbides, Nitrides and Borides; Kluwer Academic Publishers: Dordrecht, 1990.
  10. Ettmayer, P.; Lengauer, W. In Encyclopedia of Inorganic Chemistry; J. Wiley: Chichester, 1996; p 519.
  11. Toth, L. E. Transition Metal Carbides and Nitrides; Academic Press: New York, 1971.
  12. Nowotny, H. Angew. Chem. 1972, 84, 973. https://doi.org/10.1002/ange.19720842003
  13. Nowotny, H. Angew. Chem., Int.Ed. Engl. 1972, 11, 906. https://doi.org/10.1002/anie.197209061
  14. Liao, T.; Wang, J. Y.; Zhou, Y. C. J. Phys. Condens. Matter 2006, 18, L527. https://doi.org/10.1088/0953-8984/18/41/L04
  15. Medkour, Y.; Bouhemadou, A.; Roumili, A. Solid State Commun. 2008, 148, 459. https://doi.org/10.1016/j.ssc.2008.09.006
  16. Shein, I. R.; Ivanovskii, A. L. Phys. C 2010, 470, 533. https://doi.org/10.1016/j.physc.2010.04.010
  17. Romero, M.; Escamilla, R. Comput. Mater. Sci. 2012, 55, 142. https://doi.org/10.1016/j.commatsci.2011.11.038
  18. Ghebouli, M. A.; Ghebouli, B.; Fatmi, M.; Bouhemadou, A. Intermetallics 2011, 19, 1936. https://doi.org/10.1016/j.intermet.2011.05.014
  19. Sun, Z. M.; Li, S.; Ahuja, R.; Schneider, J. M. Solid State Commun. 2004, 129, 589. https://doi.org/10.1016/j.ssc.2003.12.008
  20. Bouhemadou, A. Mod. Phys. Lett. B 2008, 22, 2063. https://doi.org/10.1142/S0217984908016807
  21. Cover, M. F.; Warschkow, O.; Bilek, M. M. M.; McKenzie, D. R. J. Phys. Condens. Matter 2009, 21, 305403. https://doi.org/10.1088/0953-8984/21/30/305403
  22. Wang, J. M.; Wang, J. Y.; Zhou, Y. C.; Hu, C. F. Acta Mater. 2008, 56, 1511. https://doi.org/10.1016/j.actamat.2007.12.003
  23. Bai, Y. L.; He, X. D.; Li, Y. B.; Zhu, C. C.; Li, M. W. Solid State Commun. 2009, 149, 2156. https://doi.org/10.1016/j.ssc.2009.09.024
  24. Zhou, Y. C.; Sun, Z. M.; Wang, X. H.; Chen, S. Q. J. Phys. Condens. Matter 2001, 13, 10001. https://doi.org/10.1088/0953-8984/13/44/313
  25. Sun, Z. M.; Ahuja, R.; Li, S.; Schneider, J. M. Appl. Phys. Lett. 2003, 83, 899. https://doi.org/10.1063/1.1599038
  26. Sun, Z. M.; Music, D.; Ahuja, R.; Li, S.; Schneider, J. M. Phys. Rev. B 2004, 70, 092102. https://doi.org/10.1103/PhysRevB.70.092102
  27. Hug, G. Phys. Rev. B 2006, 74, 184113. https://doi.org/10.1103/PhysRevB.74.184113
  28. Wang, J. Y.; Zhou, Y. C. Phys. Rev. B 2004, 69, 214111. https://doi.org/10.1103/PhysRevB.69.214111
  29. Liao, T.; Wang, J. Y.; Zhou, Y. C. J. Mater. Res. 2009, 24, 556. https://doi.org/10.1557/JMR.2009.0066
  30. Liao, T.; Wang, J. Y.; Zhou, Y. C. Phys. Rev. B 2006, 73, 214109. https://doi.org/10.1103/PhysRevB.73.214109
  31. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093. https://doi.org/10.1021/ja00487a020
  32. Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc. A 1979, 366, 23. https://doi.org/10.1098/rspa.1979.0037
  33. Kanoun, M. B.; Goumri-Said, S.; Reshak, A. H.; Merad, A. E. Solid State Sci. 2010, 12, 887. https://doi.org/10.1016/j.solidstatesciences.2010.01.035
  34. Vojvodic, A.; Ruberto, C. J. Phys. Condens. Matter 2010, 22, 375501. https://doi.org/10.1088/0953-8984/22/37/375501
  35. Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, New York, 1960.

Cited by

  1. Elastic and Electronic Properties of Point Defects in Titanium Carbide vol.57, pp.6, 2013, https://doi.org/10.5012/jkcs.2013.57.6.677
  2. Zirconium metal-based MAX phases Zr2AC (A = Al, Si, P and S): A first-principles study vol.28, pp.32, 2013, https://doi.org/10.1142/s0217979215500228
  3. Attempts to synthesise quaternary MAX phases (Zr,M)2AlC and Zr2(Al,A)C as a way to approach Zr2AlC vol.4, pp.3, 2013, https://doi.org/10.1080/21663831.2016.1143053
  4. Synthesis and DFT investigation of new bismuth-containing MAX phases vol.6, pp.None, 2013, https://doi.org/10.1038/srep18829