DOI QR코드

DOI QR Code

Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex

  • Kim, Kyung-A (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School) ;
  • Cha, Jae-Ryung (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School) ;
  • Gong, Myoung-Seon (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School)
  • Received : 2012.10.23
  • Accepted : 2012.11.19
  • Published : 2013.02.20

Abstract

A low temperature ($65^{\circ}C$) thermal deposition process was developed for depositing a silver coating on thermally sensitive polymeric substrates. This low temperature deposition was achieved by chemical reduction of a silver alkylcarbamate complex with latent reducing agent. The effects of acetol as a latent reducing agent for the silver 2-ethylhexylcarbamate (Ag-EHCB) complex and their blend solutions were investigated in terms of reducing mechanism, and the size and shape of silver nanoparticles (Ag-NPs) as a function of reduced temperature and time, and PVP stabilizer concentration were determined. Low temperature deposition was achieved by combining chemical reduction with thermal heating at $65^{\circ}C$. A range of polymer film, sheet and molding product was coated with silver at thicknesses of 100 nm. The effect of process parameters and heat treatment on the properties of silver coatings was investigated.

Keywords

References

  1. Nersisyan, H. H.; Lee, J. H.; Son, H. T.; Won, C. W.; Maeng, D. Y. Mater. Res. Bull. 2003, 38, 949. https://doi.org/10.1016/S0025-5408(03)00078-3
  2. Nianjun, Y.; Koichi, A. Electrochim. Acta 2005, 50, 4868. https://doi.org/10.1016/j.electacta.2005.02.071
  3. Feldheim, D. L.; Foss, J. R. Metal Nanoparticles: Synthesis Characterization and Applications; Marcel Dekker, Inc.: New York, 2002.
  4. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. https://doi.org/10.1021/cr030063a
  5. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857. https://doi.org/10.1021/jp0516846
  6. Sun, S. Adv. Mater. 2006, 18, 393. https://doi.org/10.1002/adma.200501464
  7. Gao, J.; Guan, F.; Zhao, Y.; Yang, W.; Ma, Y.; Lu, X.; Hou, J.; Kang, J. Mater. Chem. Phys. 2001, 71, 215. https://doi.org/10.1016/S0254-0584(01)00275-9
  8. Suryanarayana, S.; Mukhopadhyay, D.; Pavilakars, N.; Frdes, F. H. J. Mater. Res. 1992, 7, 8.
  9. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Chem. Commun. 1994, 801.
  10. Cliffel, D. E.; Zamborini, F. P.; Gross, S. M.; Murray, R. W. Langmuir 2000, 16, 9699. https://doi.org/10.1021/la000922f
  11. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Nature 2005, 437, 121. https://doi.org/10.1038/nature03968
  12. Sun, Y.; Xia, Y. Science 2002, 298, 2176. https://doi.org/10.1126/science.1077229
  13. Khanna, P. K.; Gokhale, R.; Subbarao, V. V. V. S.; Vishwanath, A. K.; Das, B. K.; Satyanarayana, C. V. Mater. Chem. Phy. 2005, 92, 229. https://doi.org/10.1016/j.matchemphys.2005.01.016
  14. Li, Y.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 8938. https://doi.org/10.1021/jp010904m
  15. Yamamoto, M.; Kashiwagi, Y.; Nakamoto, M. Langmuir 2006, 22, 8581. https://doi.org/10.1021/la0600245
  16. Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. J. Colloid Interface Sci. 2006, 300, 169. https://doi.org/10.1016/j.jcis.2006.03.041
  17. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  18. Turkevich, J.; Stevenson, P. C.; Hillier. J. Discuss. Faraday Soc. 1951, 11, 55. https://doi.org/10.1039/df9511100055
  19. Silvert, P. Y.; Herrera-Urbina, R.; Duvauchelle, N.; Vijayakrishnan, V. J. Mater. Chem. 1996, 6, 573. https://doi.org/10.1039/jm9960600573
  20. Meksi, N.; Ticha, M. B.; Kechid, M.; Mhenni, M. F. J. Cleaner Production 2012, 24, 149. https://doi.org/10.1016/j.jclepro.2011.11.062
  21. Singh, N.; Khanna, P. K. Mater. Chem. Phys. 2007, 104, 367. https://doi.org/10.1016/j.matchemphys.2007.03.026
  22. White, R. H. Biochemistry 2008, 47, 5037. https://doi.org/10.1021/bi800069x
  23. Alessio, R.; Dell'Amico, D. B.; Calderazzo, F.; Englert, U.; Guarini, A.; Labella, L.; Strasser, P. Helv. Chim. Acta 1998, 81, 219. https://doi.org/10.1002/hlca.19980810204
  24. Hong, H. K.; Gong, M. S.; Park, C. K. Bull. Korean Chem. Soc. 2009, 30, 2669. https://doi.org/10.5012/bkcs.2009.30.11.2669
  25. Park, H. S.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 273. https://doi.org/10.5012/bkcs.2011.32.1.273
  26. Park, H. S.; Park, H. S.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 2575. https://doi.org/10.5012/bkcs.2010.31.9.2575
  27. Kim, K. Y.; Park, C. K.; Gong, M. S. Bull. Korean Chem. Soc. in press
  28. Jeon, Y. M.; Cho, H. N.; Gong, M. S. Macromol. Res. 2009, 17, 2. https://doi.org/10.1007/BF03218592
  29. Lim, T. H.; Jeon, Y. M.; Gong, M. S. Polymer (Korea) 2009, 33, 33.
  30. Park, H. S.; Park, H. S.; Gong, M. S. Polymer (Korea) 2010, 34, 144.
  31. Park, H. S.; Park, H. S.; Gong, M. S. Macromol. Res. 2010, 18, 897. https://doi.org/10.1007/s13233-010-0913-2
  32. Hong, H. K.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 1583. https://doi.org/10.5012/bkcs.2011.32.5.1583
  33. Park, H. S.; Hwang, J. Y.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 3581. https://doi.org/10.5012/bkcs.2011.32.10.3581
  34. Hong, H. K.; Park, C. K.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 1252. https://doi.org/10.5012/bkcs.2010.31.5.1252
  35. Chou, K. S.; Lai, Y. S. Mater. Chem. Phys. 2004, 83, 82. https://doi.org/10.1016/j.matchemphys.2003.09.026
  36. Mie, G. Ann. Physik. 1908, 25, 377.
  37. DeVoe, I. H. J. Chem. Phys. 1964, 41, 393. https://doi.org/10.1063/1.1725879
  38. Keefer, C. E.; Watkins, H. Journal (Water Pollution Control Federation) 1968, 40, 230.
  39. Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382. https://doi.org/10.1021/ja9705102

Cited by

  1. Silver loading on poly(ethylene terephthalate) fabrics using silver carbamate via thermal reduction vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3069-2
  2. Preparation of Zinc Oxide Nanoparticles at Low Temperature Using New Organometallic Zinc Carbamate Precursor vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10281
  3. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors vol.19, pp.3, 2017, https://doi.org/10.1007/s11051-017-3827-5
  4. Preparation of silver-coated silk fabrics with antibacterial activity using silver carbamate and hydrogen reduction vol.25, pp.8, 2017, https://doi.org/10.1007/s13233-017-5087-8
  5. Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties vol.31, pp.7, 2017, https://doi.org/10.1177/0885328216687665
  6. Investigation of the antimicrobial and wound healing properties of silver nanoparticle-loaded cotton prepared using silver carbamate pp.1746-7748, 2017, https://doi.org/10.1177/0040517516688630
  7. Green synthesis of silver nanoparticles and biopolymer nanocomposites: a comparative study on physico-chemical, antimicrobial and anticancer activity vol.41, pp.2, 2018, https://doi.org/10.1007/s12034-018-1567-5
  8. Surface Modification of Polyester Fibers by Thermal Reduction with Silver Carbamate Complexes vol.17, pp.8, 2013, https://doi.org/10.1007/s12221-016-5786-3
  9. A green approach to synthesize controllable silver nanostructures from Limonia acidissima for inactivation of pathogenic bacteria vol.2, pp.1, 2016, https://doi.org/10.1080/23312009.2016.1144296