References
- Nersisyan, H. H.; Lee, J. H.; Son, H. T.; Won, C. W.; Maeng, D. Y. Mater. Res. Bull. 2003, 38, 949. https://doi.org/10.1016/S0025-5408(03)00078-3
- Nianjun, Y.; Koichi, A. Electrochim. Acta 2005, 50, 4868. https://doi.org/10.1016/j.electacta.2005.02.071
- Feldheim, D. L.; Foss, J. R. Metal Nanoparticles: Synthesis Characterization and Applications; Marcel Dekker, Inc.: New York, 2002.
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. https://doi.org/10.1021/cr030063a
- Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857. https://doi.org/10.1021/jp0516846
- Sun, S. Adv. Mater. 2006, 18, 393. https://doi.org/10.1002/adma.200501464
- Gao, J.; Guan, F.; Zhao, Y.; Yang, W.; Ma, Y.; Lu, X.; Hou, J.; Kang, J. Mater. Chem. Phys. 2001, 71, 215. https://doi.org/10.1016/S0254-0584(01)00275-9
- Suryanarayana, S.; Mukhopadhyay, D.; Pavilakars, N.; Frdes, F. H. J. Mater. Res. 1992, 7, 8.
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Chem. Commun. 1994, 801.
- Cliffel, D. E.; Zamborini, F. P.; Gross, S. M.; Murray, R. W. Langmuir 2000, 16, 9699. https://doi.org/10.1021/la000922f
- Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Nature 2005, 437, 121. https://doi.org/10.1038/nature03968
- Sun, Y.; Xia, Y. Science 2002, 298, 2176. https://doi.org/10.1126/science.1077229
- Khanna, P. K.; Gokhale, R.; Subbarao, V. V. V. S.; Vishwanath, A. K.; Das, B. K.; Satyanarayana, C. V. Mater. Chem. Phy. 2005, 92, 229. https://doi.org/10.1016/j.matchemphys.2005.01.016
- Li, Y.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 8938. https://doi.org/10.1021/jp010904m
- Yamamoto, M.; Kashiwagi, Y.; Nakamoto, M. Langmuir 2006, 22, 8581. https://doi.org/10.1021/la0600245
- Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. J. Colloid Interface Sci. 2006, 300, 169. https://doi.org/10.1016/j.jcis.2006.03.041
- Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
- Turkevich, J.; Stevenson, P. C.; Hillier. J. Discuss. Faraday Soc. 1951, 11, 55. https://doi.org/10.1039/df9511100055
- Silvert, P. Y.; Herrera-Urbina, R.; Duvauchelle, N.; Vijayakrishnan, V. J. Mater. Chem. 1996, 6, 573. https://doi.org/10.1039/jm9960600573
- Meksi, N.; Ticha, M. B.; Kechid, M.; Mhenni, M. F. J. Cleaner Production 2012, 24, 149. https://doi.org/10.1016/j.jclepro.2011.11.062
- Singh, N.; Khanna, P. K. Mater. Chem. Phys. 2007, 104, 367. https://doi.org/10.1016/j.matchemphys.2007.03.026
- White, R. H. Biochemistry 2008, 47, 5037. https://doi.org/10.1021/bi800069x
- Alessio, R.; Dell'Amico, D. B.; Calderazzo, F.; Englert, U.; Guarini, A.; Labella, L.; Strasser, P. Helv. Chim. Acta 1998, 81, 219. https://doi.org/10.1002/hlca.19980810204
- Hong, H. K.; Gong, M. S.; Park, C. K. Bull. Korean Chem. Soc. 2009, 30, 2669. https://doi.org/10.5012/bkcs.2009.30.11.2669
- Park, H. S.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 273. https://doi.org/10.5012/bkcs.2011.32.1.273
- Park, H. S.; Park, H. S.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 2575. https://doi.org/10.5012/bkcs.2010.31.9.2575
- Kim, K. Y.; Park, C. K.; Gong, M. S. Bull. Korean Chem. Soc. in press
- Jeon, Y. M.; Cho, H. N.; Gong, M. S. Macromol. Res. 2009, 17, 2. https://doi.org/10.1007/BF03218592
- Lim, T. H.; Jeon, Y. M.; Gong, M. S. Polymer (Korea) 2009, 33, 33.
- Park, H. S.; Park, H. S.; Gong, M. S. Polymer (Korea) 2010, 34, 144.
- Park, H. S.; Park, H. S.; Gong, M. S. Macromol. Res. 2010, 18, 897. https://doi.org/10.1007/s13233-010-0913-2
- Hong, H. K.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 1583. https://doi.org/10.5012/bkcs.2011.32.5.1583
- Park, H. S.; Hwang, J. Y.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 3581. https://doi.org/10.5012/bkcs.2011.32.10.3581
- Hong, H. K.; Park, C. K.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 1252. https://doi.org/10.5012/bkcs.2010.31.5.1252
- Chou, K. S.; Lai, Y. S. Mater. Chem. Phys. 2004, 83, 82. https://doi.org/10.1016/j.matchemphys.2003.09.026
- Mie, G. Ann. Physik. 1908, 25, 377.
- DeVoe, I. H. J. Chem. Phys. 1964, 41, 393. https://doi.org/10.1063/1.1725879
- Keefer, C. E.; Watkins, H. Journal (Water Pollution Control Federation) 1968, 40, 230.
- Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382. https://doi.org/10.1021/ja9705102
Cited by
- Silver loading on poly(ethylene terephthalate) fabrics using silver carbamate via thermal reduction vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3069-2
- Preparation of Zinc Oxide Nanoparticles at Low Temperature Using New Organometallic Zinc Carbamate Precursor vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10281
- Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors vol.19, pp.3, 2017, https://doi.org/10.1007/s11051-017-3827-5
- Preparation of silver-coated silk fabrics with antibacterial activity using silver carbamate and hydrogen reduction vol.25, pp.8, 2017, https://doi.org/10.1007/s13233-017-5087-8
- Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties vol.31, pp.7, 2017, https://doi.org/10.1177/0885328216687665
- Investigation of the antimicrobial and wound healing properties of silver nanoparticle-loaded cotton prepared using silver carbamate pp.1746-7748, 2017, https://doi.org/10.1177/0040517516688630
- Green synthesis of silver nanoparticles and biopolymer nanocomposites: a comparative study on physico-chemical, antimicrobial and anticancer activity vol.41, pp.2, 2018, https://doi.org/10.1007/s12034-018-1567-5
- Surface Modification of Polyester Fibers by Thermal Reduction with Silver Carbamate Complexes vol.17, pp.8, 2013, https://doi.org/10.1007/s12221-016-5786-3
- A green approach to synthesize controllable silver nanostructures from Limonia acidissima for inactivation of pathogenic bacteria vol.2, pp.1, 2016, https://doi.org/10.1080/23312009.2016.1144296