DOI QR코드

DOI QR Code

CCl4 Activation Mechanisms by Gas-Phase CHBr and CBr2: A Comparative Study

  • Liang, Junxi (College of Chemical Engineering, Northwest University for Nationalities) ;
  • Wang, Yanbin (College of Chemical Engineering, Northwest University for Nationalities) ;
  • Hasi, Qimeige (Science Experimental Center, Northwest University for Nationalities) ;
  • Geng, Zhiyuan (Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials)
  • 투고 : 2012.08.31
  • 심사 : 2012.11.12
  • 발행 : 2013.02.20

초록

The mechanisms concerning C-Cl activation of $CCl_4$ by $CHBr^{{\cdot}-}$ and $CBr{_2}^{{\cdot}-}$ have been comparatively investigated in theory. Optimized geometries and frequencies of all stationary points on PES are obtained at the BhandHLYP/aug-cc-pVTZ level of theory, and then the energy profiles are refined at the QCISD(T) method with the aug-cc-pVTZ basis by using the BhandHLYP/aug-cc-pVTZ optimized geometries. Our calculated findings suggest that in the title reactions the major mechanisms consist of both Cl-abstraction and $S_N2$ substitution reactions. Also, a succeeding pathway described by electron transfer was revealed before the initial Cl-abstraction products separate. Those are consistent with relevant experimental results.

키워드

참고문헌

  1. Murray, K. K.; Leopold, D. G.; Miller, T. M.; Lineberger, W. C. J. Chem. Phys. 1988, 89, 5442. https://doi.org/10.1063/1.455596
  2. Gilles, M. K.; Ervin, K. M.; Ho, J.; Lineberger, W. C. J. Phys. Chem. 1992, 96, 1130. https://doi.org/10.1021/j100182a021
  3. Schwartz, R. L.; Davico, G. E.; Ramond, T. M.; Lineberger, W. C. J. Phys. Chem. A 1999, 103, 213. https://doi.org/10.1021/jp984069t
  4. Bunnett, J. F. Acc. Chem. Res. 1978, 11, 413. https://doi.org/10.1021/ar50131a003
  5. Kochi, J. K. Angew. Chem. Int. Ed. Engl. 1988, 27, 1227. https://doi.org/10.1002/anie.198812273
  6. Ashby, E. C. Acc. Chem. Res. 1988, 21, 414. https://doi.org/10.1021/ar00155a005
  7. Saveant, J.-M. Acc. Chem. Res. 1993, 26, 455. https://doi.org/10.1021/ar00033a001
  8. Lund, H.; Daasbjerg, K.; Lund, T.; Pedersen, S. U. Acc. Chem. Res. 1995, 28, 313. https://doi.org/10.1021/ar00055a005
  9. Kasdan, A.; Herbst, E.; Lineberger, W. C. Chem. Phys. Lett. 1975, 31, 78. https://doi.org/10.1016/0009-2614(75)80062-5
  10. Kebarle, P.; Chowdhury, S. Chem. Rev. 1987, 87, 513. https://doi.org/10.1021/cr00079a003
  11. Bartmess, J. E. Mass Spectrom. Rev. 1989, 8, 297. https://doi.org/10.1002/mas.1280080502
  12. Leopold, D. G.; Miller, A. M. S.; Lineberger, W. C. J. Am. Chem. Soc. 1986, 108, 1379. https://doi.org/10.1021/ja00267a003
  13. Ingemann, S.; Fokkens, R. H.; Nibbering. N. M. M. J. Org. Chem. 1991, 56, 607. https://doi.org/10.1021/jo00002a023
  14. Knighton, W. B.; Grimsrud, E. I. J. Am. Chem. Soc. 1992, 114, 2336. https://doi.org/10.1021/ja00033a006
  15. Crocker, L.; Wang, T.; Kebarle, P. J. Am. Chem. Soc. 1993, 115, 7818. https://doi.org/10.1021/ja00070a030
  16. Ferguson, E. E.; Fehsenfeld, F. C.; Albritton, D. L. Gas-phase Ion Chemistry; Academic Press: New York, 1979.
  17. Jennings, K. R. Gas-phase Ion Chemistry; Academic Press: New York, 1979.
  18. Harrison, A. G. Chemical Ionization Mass Spectrometry; CRC Press, Boca Raton, 1983.
  19. Grimsrud, E. P. Electron Capture; Elsevier: New York, 1981.
  20. Born, M.; Ingemann, S.; Nibbering, N. M. M. J. Am. Chem. Soc. 1994, 116, 7210. https://doi.org/10.1021/ja00095a025
  21. Born, M.; Ingemann, S.; Nibbering, N. M. M. J. Chem. Soc., Perkin Trans. 2 1996, 2537.
  22. Villano, S. M.; Eyet, N.; Lineberger, W. C.; Bierbaum, V. M. J. Am. Chem. Soc. 2008, 130, 7214. https://doi.org/10.1021/ja801819b
  23. Van Doren, J. M.; Barlow, S. E.; Depuy, C. H.; Bierbaum, V. M. Int. J. Mass Spectrom. 1987, 81, 85. https://doi.org/10.1016/0168-1176(87)80007-1
  24. Wille, U.; Dreessen, T. J. Phys. Chem. A 2006, 110, 2195. https://doi.org/10.1021/jp0454772
  25. Wille, U.; Tan, J. C.; Mucke, E. K. J. Org. Chem. 2008, 73, 5821. https://doi.org/10.1021/jo800750a
  26. Kyne, S. H.; Schiesser, C. H.; Matsubara, H. J. Org. Chem. 2008, 73, 427. https://doi.org/10.1021/jo701825y
  27. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  28. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  29. Parthiban, S.; de Oliveira, G.; Martin, J. M. L. J. Phys. Chem. A 2001, 105, 895. https://doi.org/10.1021/jp0031000
  30. Takahashi, M.; Tsutsui, S.; Sakamoto, K.; Kira, M.; Muller, T.; Apeloig, Y. J. Am. Chem. Soc. 2001, 123, 347. https://doi.org/10.1021/ja003463d
  31. Fukui, K. Acc. Chem. Res. 1981, 14, 363. https://doi.org/10.1021/ar00072a001
  32. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968. https://doi.org/10.1063/1.453520
  33. Reed, A. E.; Weinhold, L. A. F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  34. Frisch, M. J.; T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.;Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford CT, 2009.
  35. Applequist, D. E.; Peterson, A. H. J. Am. Chem. Soc. 1961, 83, 862. https://doi.org/10.1021/ja01465a030
  36. Kapeller, D.; Barth, R.; Mereiter, K.; Hammerschmidt, F. J. Am. Chem. Soc. 2007, 129, 914. https://doi.org/10.1021/ja066183s
  37. Nobe, Y.; Arayama, K.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 18006. https://doi.org/10.1021/ja055732b
  38. Bierbaum, V. M.; Depuy, C. H.; Shapiro, R. H. J. Am. Chem. Soc. 1977, 99, 5800. https://doi.org/10.1021/ja00459a046
  39. Kass, S. R.; Filley, J. J.; Doren, M. V.; Depuy, C. H. J. Am. Chem. Soc. 1986, 108, 2849. https://doi.org/10.1021/ja00271a011
  40. Rayez, M.-T.; Rayez, J.-C.; Sawerysyn, J.-P. J. Phys. Chem. 1994, 98, 11342. https://doi.org/10.1021/j100095a017
  41. Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.
  42. Moss, R. A.; Fedorynski, M.; Shieh, W. C. J. Am. Chem. Soc. 1979, 101, 4736. https://doi.org/10.1021/ja00510a054
  43. Smith, N. P.; Stevens, I. D. R. J. Chem. Soc., Perkin Trans. 2 1979, 1298.
  44. Moss, R. A. Acc. Chem. Res. 1980, 13, 58. https://doi.org/10.1021/ar50146a005
  45. Jones, W. M.; LaBar, R. A.; Brinker, U. H.; Gebert, P. H. J. Am. Chem. Soc. 1977, 99, 6379. https://doi.org/10.1021/ja00461a034
  46. Depuy, C. H. J. Org. Chem. 2002, 67, 2393. https://doi.org/10.1021/jo0163593
  47. Born, M.; Ingemann, S.; Nibbering, N. M. M. Int. J. Mass Spectrom. 2000, 194, 103. https://doi.org/10.1016/S1387-3806(99)00125-6

피인용 문헌

  1. Reaction of CS2 with CHBr•− and CBr 2 •− in the gas phase: a Theoretical Mechanistic Study vol.11, pp.5, 2014, https://doi.org/10.1007/s13738-013-0404-4