DOI QR코드

DOI QR Code

Effect of Different Pretreatments on Indium-Tin Oxide Electrodes

  • Choi, Moonjeong (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Jo, Kyungmin (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Yang, Haesik (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
  • Received : 2012.10.25
  • Accepted : 2012.11.12
  • Published : 2013.02.20

Abstract

The effect of pretreatment on indium-tin oxide (ITO) electrodes has been rarely studied, although that on metal and carbon electrodes has been enormously done. The electrochemical and surface properties of ITO electrodes are investigated after 6 different pretreatments. The electrochemical behaviors for oxygen reduction, $Ru(NH_3){_6}^{3+}$ reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are compared, and the surface roughness, hydrophilicity, and surface chemical composition are also compared. Oxygen reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are highly affected by the type of the pretreatment, whereas $Ru(NH_3){_6}^{3+}$ reduction is almost independent of it. Interestingly, oxygen reduction is significantly suppressed by the treatment in an HCl solution. The changes in surface roughness and composition are not high after each pretreatment, but the change in contact angle is substantial in some pretreatments.

Keywords

References

  1. Carvalhal, R. F.; Freire, R. S.; Kubota, L. T. Electroanalysis 2005, 17, 1251. https://doi.org/10.1002/elan.200403224
  2. Sun, S.-G.; Cai, W.-B.; Wan, L.-J.; Osawa, M. J. Phys. Chem. B 1999, 103, 2460.
  3. Burke, L. D.; Hurley, L. M.; Lodge, V. E.; Mooney, M. B. J. Solid State Electrochem. 2001, 5, 250. https://doi.org/10.1007/s100080000152
  4. Krstajic, N. V.; Vracar, L. M.; Radmilovic, V. R.; Neophytides, S. G.; Labou, M.; Jaksic, J. M.; Tunold, R.; Falaras, P.; Jaksic, M. M. Surf. Sci. 2007, 601, 1949. https://doi.org/10.1016/j.susc.2007.02.019
  5. Orellana, R. C.; Martins, M. E.; Arvia, A. J. Electrochim. Acta 1979, 24, 469. https://doi.org/10.1016/0013-4686(79)87037-1
  6. Bhalla, V.; Carrara, S.; Stagni, C.; Samori, B. Thin Solid Films 2010, 518, 3360. https://doi.org/10.1016/j.tsf.2009.10.022
  7. Kang, J.; Rowntree, P. A. Langmuir 2007, 23, 509. https://doi.org/10.1021/la0518804
  8. Ron, H.; Matlis, S.; Rubinstein, I. Langmuir 1998, 14, 1116. https://doi.org/10.1021/la970785v
  9. Ron, H.; Rubinstein, I. Langmuir 1994, 10, 4566. https://doi.org/10.1021/la00024a030
  10. Choi, M.; Jo, K.; Yang, H. J. Electrochem. Sci. Tech. 2012, 3, 24. https://doi.org/10.5229/JECST.2012.3.1.24
  11. Irwin, M. D.; Liu, J.; Leever, B. J.; Servaites, J. D.; Hersam, M. C.; Durstock, M. F.; Marks, T. J. Langmuir 2010, 26, 2584. https://doi.org/10.1021/la902879h
  12. Markovich, I.; Mandler, D. J. Electroanal. Chem. 2000, 484, 194. https://doi.org/10.1016/S0022-0728(00)00084-X
  13. Hillebrandt, H.; Tanaka, M. J. Phys. Chem. B 2001, 105, 4270. https://doi.org/10.1021/jp004062n
  14. Markovich, I.; Mandler, D. J. Electroanal. Chem. 2001, 500, 453. https://doi.org/10.1016/S0022-0728(00)00458-7
  15. Fang, A.; Ng, H. T.; Li, F. Y. Biosens. Bioelectron. 2003, 19, 43. https://doi.org/10.1016/S0956-5663(03)00133-7
  16. Hedges, D. H. P.; Richardson, D. J.; Russell, D. A. Langmuir 2004, 20, 1901. https://doi.org/10.1021/la035795c
  17. Ruan, C.; Yang, L.; Li, Y. Anal. Chem. 2002, 74, 4814. https://doi.org/10.1021/ac025647b
  18. Chockalingam, M.; Darwish, N.; Le Saux, G.; Gooding, J. J. Langmuir 2011, 27, 2545. https://doi.org/10.1021/la104464w
  19. Yang, L.; Li, Y. Biosens. Bioelectron. 2005, 20, 1407. https://doi.org/10.1016/j.bios.2004.06.024
  20. Hong, B. J.; Shim, J. Y.; Oh, S. J.; Park, J. W. Langmuir 2003, 19, 2357. https://doi.org/10.1021/la026367u
  21. Das, J.; Jo, K.; Lee, J. W.; Yang, H. Anal. Chem. 2007, 79, 2790. https://doi.org/10.1021/ac062291l
  22. Aziz, M. A.; Patra, S.; Yang, H. Chem. Commun. 2008, 4607.
  23. Aziz, M. A.; Park, S.; Jon, S.; Yang, H. Chem. Commun. 2007, 2610.
  24. Haque, A.-M. J.; Park, H.; Sung, D.; Jon, S.; Choi, S.-Y.; Kim, K. Anal. Chem. 2012, 84, 1871. https://doi.org/10.1021/ac202562v
  25. McCreery, R. L. In Electroanalytical Chemistry; Bard, A. J., Ed.; Marcel Dekker, Inc.: New York, 1991; Vol. 17, p 221.
  26. Chen, P.; McCreery, R. L. Anal. Chem. 1996, 68, 3958. https://doi.org/10.1021/ac960492r
  27. Jo, K.; Yu, H.-Z.; Yang, H. Electrochim. Acta 2011, 56, 4828. https://doi.org/10.1016/j.electacta.2011.03.021
  28. Yan, C.; Zharnikov, M.; Golzhauser, A.; Grunze, M. Langmuir 2000, 16, 6208. https://doi.org/10.1021/la000128u
  29. Brewer, S. H.; Brown, D. A.; Franzen, S. Langmuir 2002, 18, 6857. https://doi.org/10.1021/la015720d

Cited by

  1. Glucose-Oxidase Label-Based Redox Cycling for an Incubation Period-Free Electrochemical Immunosensor vol.85, pp.10, 2013, https://doi.org/10.1021/ac400573j
  2. ) detection using electrochemical–chemical–chemical redox cycling at bare indium–tin oxide electrodes vol.139, pp.22, 2014, https://doi.org/10.1039/C4AN01174K
  3. Electroreduction-Based Electrochemical-Enzymatic Redox Cycling for the Detection of Cancer Antigen 15-3 Using Graphene Oxide-Modified Indium–Tin Oxide Electrodes vol.86, pp.3, 2014, https://doi.org/10.1021/ac403912d
  4. Sensitive and direct electrochemical detection of double-stranded DNA utilizing alkaline phosphatase-labelled zinc finger proteins vol.140, pp.12, 2015, https://doi.org/10.1039/C5AN00623F
  5. -ascorbic acid vol.140, pp.16, 2015, https://doi.org/10.1039/C5AN01086A
  6. thin film electrodes vol.17, pp.44, 2015, https://doi.org/10.1039/C5CP04484G
  7. Low-Interference Washing-Free Electrochemical Immunosensor Using Glycerol-3-phosphate Dehydrogenase as an Enzyme Label vol.87, pp.7, 2015, https://doi.org/10.1021/ac504485a
  8. A highly sensitive and simply operated protease sensor toward point-of-care testing vol.141, pp.8, 2016, https://doi.org/10.1039/C6AN00251J
  9. An ultrasensitive and incubation-free electrochemical immunosensor using a gold-nanocatalyst label mediating outer-sphere-reaction-philic and inner-sphere-reaction-philic species vol.52, pp.34, 2016, https://doi.org/10.1039/C6CC00353B
  10. -Based Electrochromic Devices vol.6, pp.12, 2017, https://doi.org/10.1149/2.0071712jss
  11. DT-Diaphorase as a Bifunctional Enzyme Label That Allows Rapid Enzymatic Amplification and Electrochemical Redox Cycling vol.89, pp.15, 2017, https://doi.org/10.1021/acs.analchem.7b01223
  12. Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA–RNA Hybrids vol.89, pp.3, 2017, https://doi.org/10.1021/acs.analchem.6b04609
  13. Rapid and Sensitive Detection of NADH and Lactate Dehydrogenase Using Thermostable DT-Diaphorase Immobilized on Electrode vol.30, pp.7, 2018, https://doi.org/10.1002/elan.201800119
  14. Specific and Rapid Glucose Detection Using NAD‐dependent Glucose Dehydrogenase, Diaphorase, and Osmium Complex pp.1521-4109, 2019, https://doi.org/10.1002/elan.201800814
  15. Sensitive Phenol Detection Using Tyrosinase‐Based Phenol Oxidation Combined with Redox Cycling of Catechol vol.26, pp.12, 2013, https://doi.org/10.1002/elan.201400383
  16. Ultrasensitive Protease Sensors Using Selective Affinity Binding, Selective Proteolytic Reaction, and Proximity-Dependent Electrochemical Reaction vol.88, pp.24, 2016, https://doi.org/10.1021/acs.analchem.6b03255
  17. Rapid and Sensitive Electrochemical Detection of Carbaryl Based on Enzyme Inhibition and Thiocholine Oxidation Mediated by a Ruthenium(III) Complex vol.29, pp.2, 2013, https://doi.org/10.1002/elan.201600308
  18. Microwave exposure as a fast and cost-effective alternative of oxygen plasma treatment of indium-tin oxide electrode for application in organic solar cells vol.50, pp.50, 2013, https://doi.org/10.1088/1361-6463/aa946c
  19. Washing-Free Electrochemical Detection of Amplified Double-Stranded DNAs Using a Zinc Finger Protein vol.90, pp.7, 2018, https://doi.org/10.1021/acs.analchem.8b00143
  20. Washing-Free Displacement Immunosensor for Cortisol in Human Serum Containing Numerous Interfering Species vol.90, pp.18, 2013, https://doi.org/10.1021/acs.analchem.8b02590
  21. Modifying the Surface Properties of Indium Tin Oxide with Alcohol-Based Monolayers for Use in Organic Electronics vol.1, pp.5, 2013, https://doi.org/10.1021/acsanm.8b00302
  22. Use of a Phosphatase-Like DT-Diaphorase Label for the Detection of Outer Membrane Vesicles vol.91, pp.7, 2013, https://doi.org/10.1021/acs.analchem.9b00064
  23. Combined Signal Amplification Using a Propagating Cascade Reaction and a Redox Cycling Reaction for Sensitive Thyroid-Stimulating Hormone Detection vol.91, pp.12, 2013, https://doi.org/10.1021/acs.analchem.9b01740
  24. Electrochemical Immunoassay Based on Indium Tin Oxide Activity Toward a Alkaline Phosphatase vol.13, pp.4, 2013, https://doi.org/10.1007/s13206-019-3410-5
  25. Review-Recent Advancements in the Utilization of Indium Tin Oxide (ITO) in Electroanalysis without Surface Modification vol.167, pp.3, 2013, https://doi.org/10.1149/1945-7111/ab64bd
  26. Electrochemical Immunosensor for Human IgE Using Ferrocene Self-Assembled Monolayers Modified ITO Electrode vol.10, pp.4, 2013, https://doi.org/10.3390/bios10040038
  27. Advanced 96-microtiter plate based bioelectrochemical platform reveals molecular short cut of electron flow in cytochrome P450 enzyme vol.20, pp.8, 2013, https://doi.org/10.1039/c9lc01220f
  28. Sensitivity Improvement in Electrochemical Immunoassays Using Antibody Immobilized Magnetic Nanoparticles with a Clean ITO Working Electrode vol.14, pp.3, 2013, https://doi.org/10.1007/s13206-020-4309-x
  29. Boosting electrochemical immunosensing performance by employing acetaminophen as a peroxidase substrate vol.165, pp.None, 2013, https://doi.org/10.1016/j.bios.2020.112337
  30. Surface‐Plasmonic‐Field‐Induced Photoredox Catalysis and Mediated Electron Transfer for Washing‐Free DNA Detection vol.132, pp.43, 2020, https://doi.org/10.1002/ange.202007318
  31. Surface‐Plasmonic‐Field‐Induced Photoredox Catalysis and Mediated Electron Transfer for Washing‐Free DNA Detection vol.59, pp.43, 2013, https://doi.org/10.1002/anie.202007318
  32. Trypsin Detection Using Electrochemical REDUCTION‐BASED Redox Cycling vol.42, pp.1, 2021, https://doi.org/10.1002/bkcs.12147
  33. Interference-Free Duplex Detection of Total and Active Enzyme Concentrations at a Single Working Electrode vol.6, pp.3, 2013, https://doi.org/10.1021/acssensors.0c02597
  34. Washing- and Separation-Free Electrochemical Detection of Porphyromonas gingivalis in Saliva for Initial Diagnosis of Periodontitis vol.93, pp.13, 2021, https://doi.org/10.1021/acs.analchem.1c00572
  35. Sensitive electrochemical immunosensor using a bienzymatic system consisting of β-galactosidase and glucose dehydrogenase vol.146, pp.12, 2013, https://doi.org/10.1039/d1an00562f