References
- Carvalhal, R. F.; Freire, R. S.; Kubota, L. T. Electroanalysis 2005, 17, 1251. https://doi.org/10.1002/elan.200403224
- Sun, S.-G.; Cai, W.-B.; Wan, L.-J.; Osawa, M. J. Phys. Chem. B 1999, 103, 2460.
- Burke, L. D.; Hurley, L. M.; Lodge, V. E.; Mooney, M. B. J. Solid State Electrochem. 2001, 5, 250. https://doi.org/10.1007/s100080000152
- Krstajic, N. V.; Vracar, L. M.; Radmilovic, V. R.; Neophytides, S. G.; Labou, M.; Jaksic, J. M.; Tunold, R.; Falaras, P.; Jaksic, M. M. Surf. Sci. 2007, 601, 1949. https://doi.org/10.1016/j.susc.2007.02.019
- Orellana, R. C.; Martins, M. E.; Arvia, A. J. Electrochim. Acta 1979, 24, 469. https://doi.org/10.1016/0013-4686(79)87037-1
- Bhalla, V.; Carrara, S.; Stagni, C.; Samori, B. Thin Solid Films 2010, 518, 3360. https://doi.org/10.1016/j.tsf.2009.10.022
- Kang, J.; Rowntree, P. A. Langmuir 2007, 23, 509. https://doi.org/10.1021/la0518804
- Ron, H.; Matlis, S.; Rubinstein, I. Langmuir 1998, 14, 1116. https://doi.org/10.1021/la970785v
- Ron, H.; Rubinstein, I. Langmuir 1994, 10, 4566. https://doi.org/10.1021/la00024a030
- Choi, M.; Jo, K.; Yang, H. J. Electrochem. Sci. Tech. 2012, 3, 24. https://doi.org/10.5229/JECST.2012.3.1.24
- Irwin, M. D.; Liu, J.; Leever, B. J.; Servaites, J. D.; Hersam, M. C.; Durstock, M. F.; Marks, T. J. Langmuir 2010, 26, 2584. https://doi.org/10.1021/la902879h
- Markovich, I.; Mandler, D. J. Electroanal. Chem. 2000, 484, 194. https://doi.org/10.1016/S0022-0728(00)00084-X
- Hillebrandt, H.; Tanaka, M. J. Phys. Chem. B 2001, 105, 4270. https://doi.org/10.1021/jp004062n
- Markovich, I.; Mandler, D. J. Electroanal. Chem. 2001, 500, 453. https://doi.org/10.1016/S0022-0728(00)00458-7
- Fang, A.; Ng, H. T.; Li, F. Y. Biosens. Bioelectron. 2003, 19, 43. https://doi.org/10.1016/S0956-5663(03)00133-7
- Hedges, D. H. P.; Richardson, D. J.; Russell, D. A. Langmuir 2004, 20, 1901. https://doi.org/10.1021/la035795c
- Ruan, C.; Yang, L.; Li, Y. Anal. Chem. 2002, 74, 4814. https://doi.org/10.1021/ac025647b
- Chockalingam, M.; Darwish, N.; Le Saux, G.; Gooding, J. J. Langmuir 2011, 27, 2545. https://doi.org/10.1021/la104464w
- Yang, L.; Li, Y. Biosens. Bioelectron. 2005, 20, 1407. https://doi.org/10.1016/j.bios.2004.06.024
- Hong, B. J.; Shim, J. Y.; Oh, S. J.; Park, J. W. Langmuir 2003, 19, 2357. https://doi.org/10.1021/la026367u
- Das, J.; Jo, K.; Lee, J. W.; Yang, H. Anal. Chem. 2007, 79, 2790. https://doi.org/10.1021/ac062291l
- Aziz, M. A.; Patra, S.; Yang, H. Chem. Commun. 2008, 4607.
- Aziz, M. A.; Park, S.; Jon, S.; Yang, H. Chem. Commun. 2007, 2610.
- Haque, A.-M. J.; Park, H.; Sung, D.; Jon, S.; Choi, S.-Y.; Kim, K. Anal. Chem. 2012, 84, 1871. https://doi.org/10.1021/ac202562v
- McCreery, R. L. In Electroanalytical Chemistry; Bard, A. J., Ed.; Marcel Dekker, Inc.: New York, 1991; Vol. 17, p 221.
- Chen, P.; McCreery, R. L. Anal. Chem. 1996, 68, 3958. https://doi.org/10.1021/ac960492r
- Jo, K.; Yu, H.-Z.; Yang, H. Electrochim. Acta 2011, 56, 4828. https://doi.org/10.1016/j.electacta.2011.03.021
- Yan, C.; Zharnikov, M.; Golzhauser, A.; Grunze, M. Langmuir 2000, 16, 6208. https://doi.org/10.1021/la000128u
- Brewer, S. H.; Brown, D. A.; Franzen, S. Langmuir 2002, 18, 6857. https://doi.org/10.1021/la015720d
Cited by
- Glucose-Oxidase Label-Based Redox Cycling for an Incubation Period-Free Electrochemical Immunosensor vol.85, pp.10, 2013, https://doi.org/10.1021/ac400573j
- ) detection using electrochemical–chemical–chemical redox cycling at bare indium–tin oxide electrodes vol.139, pp.22, 2014, https://doi.org/10.1039/C4AN01174K
- Electroreduction-Based Electrochemical-Enzymatic Redox Cycling for the Detection of Cancer Antigen 15-3 Using Graphene Oxide-Modified Indium–Tin Oxide Electrodes vol.86, pp.3, 2014, https://doi.org/10.1021/ac403912d
- Sensitive and direct electrochemical detection of double-stranded DNA utilizing alkaline phosphatase-labelled zinc finger proteins vol.140, pp.12, 2015, https://doi.org/10.1039/C5AN00623F
- -ascorbic acid vol.140, pp.16, 2015, https://doi.org/10.1039/C5AN01086A
- thin film electrodes vol.17, pp.44, 2015, https://doi.org/10.1039/C5CP04484G
- Low-Interference Washing-Free Electrochemical Immunosensor Using Glycerol-3-phosphate Dehydrogenase as an Enzyme Label vol.87, pp.7, 2015, https://doi.org/10.1021/ac504485a
- A highly sensitive and simply operated protease sensor toward point-of-care testing vol.141, pp.8, 2016, https://doi.org/10.1039/C6AN00251J
- An ultrasensitive and incubation-free electrochemical immunosensor using a gold-nanocatalyst label mediating outer-sphere-reaction-philic and inner-sphere-reaction-philic species vol.52, pp.34, 2016, https://doi.org/10.1039/C6CC00353B
- -Based Electrochromic Devices vol.6, pp.12, 2017, https://doi.org/10.1149/2.0071712jss
- DT-Diaphorase as a Bifunctional Enzyme Label That Allows Rapid Enzymatic Amplification and Electrochemical Redox Cycling vol.89, pp.15, 2017, https://doi.org/10.1021/acs.analchem.7b01223
- Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA–RNA Hybrids vol.89, pp.3, 2017, https://doi.org/10.1021/acs.analchem.6b04609
- Rapid and Sensitive Detection of NADH and Lactate Dehydrogenase Using Thermostable DT-Diaphorase Immobilized on Electrode vol.30, pp.7, 2018, https://doi.org/10.1002/elan.201800119
- Specific and Rapid Glucose Detection Using NAD‐dependent Glucose Dehydrogenase, Diaphorase, and Osmium Complex pp.1521-4109, 2019, https://doi.org/10.1002/elan.201800814
- Sensitive Phenol Detection Using Tyrosinase‐Based Phenol Oxidation Combined with Redox Cycling of Catechol vol.26, pp.12, 2013, https://doi.org/10.1002/elan.201400383
- Ultrasensitive Protease Sensors Using Selective Affinity Binding, Selective Proteolytic Reaction, and Proximity-Dependent Electrochemical Reaction vol.88, pp.24, 2016, https://doi.org/10.1021/acs.analchem.6b03255
- Rapid and Sensitive Electrochemical Detection of Carbaryl Based on Enzyme Inhibition and Thiocholine Oxidation Mediated by a Ruthenium(III) Complex vol.29, pp.2, 2013, https://doi.org/10.1002/elan.201600308
- Microwave exposure as a fast and cost-effective alternative of oxygen plasma treatment of indium-tin oxide electrode for application in organic solar cells vol.50, pp.50, 2013, https://doi.org/10.1088/1361-6463/aa946c
- Washing-Free Electrochemical Detection of Amplified Double-Stranded DNAs Using a Zinc Finger Protein vol.90, pp.7, 2018, https://doi.org/10.1021/acs.analchem.8b00143
- Washing-Free Displacement Immunosensor for Cortisol in Human Serum Containing Numerous Interfering Species vol.90, pp.18, 2013, https://doi.org/10.1021/acs.analchem.8b02590
- Modifying the Surface Properties of Indium Tin Oxide with Alcohol-Based Monolayers for Use in Organic Electronics vol.1, pp.5, 2013, https://doi.org/10.1021/acsanm.8b00302
- Use of a Phosphatase-Like DT-Diaphorase Label for the Detection of Outer Membrane Vesicles vol.91, pp.7, 2013, https://doi.org/10.1021/acs.analchem.9b00064
- Combined Signal Amplification Using a Propagating Cascade Reaction and a Redox Cycling Reaction for Sensitive Thyroid-Stimulating Hormone Detection vol.91, pp.12, 2013, https://doi.org/10.1021/acs.analchem.9b01740
- Electrochemical Immunoassay Based on Indium Tin Oxide Activity Toward a Alkaline Phosphatase vol.13, pp.4, 2013, https://doi.org/10.1007/s13206-019-3410-5
- Review-Recent Advancements in the Utilization of Indium Tin Oxide (ITO) in Electroanalysis without Surface Modification vol.167, pp.3, 2013, https://doi.org/10.1149/1945-7111/ab64bd
- Electrochemical Immunosensor for Human IgE Using Ferrocene Self-Assembled Monolayers Modified ITO Electrode vol.10, pp.4, 2013, https://doi.org/10.3390/bios10040038
- Advanced 96-microtiter plate based bioelectrochemical platform reveals molecular short cut of electron flow in cytochrome P450 enzyme vol.20, pp.8, 2013, https://doi.org/10.1039/c9lc01220f
- Sensitivity Improvement in Electrochemical Immunoassays Using Antibody Immobilized Magnetic Nanoparticles with a Clean ITO Working Electrode vol.14, pp.3, 2013, https://doi.org/10.1007/s13206-020-4309-x
- Boosting electrochemical immunosensing performance by employing acetaminophen as a peroxidase substrate vol.165, pp.None, 2013, https://doi.org/10.1016/j.bios.2020.112337
- Surface‐Plasmonic‐Field‐Induced Photoredox Catalysis and Mediated Electron Transfer for Washing‐Free DNA Detection vol.132, pp.43, 2020, https://doi.org/10.1002/ange.202007318
- Surface‐Plasmonic‐Field‐Induced Photoredox Catalysis and Mediated Electron Transfer for Washing‐Free DNA Detection vol.59, pp.43, 2013, https://doi.org/10.1002/anie.202007318
- Trypsin Detection Using Electrochemical REDUCTION‐BASED Redox Cycling vol.42, pp.1, 2021, https://doi.org/10.1002/bkcs.12147
- Interference-Free Duplex Detection of Total and Active Enzyme Concentrations at a Single Working Electrode vol.6, pp.3, 2013, https://doi.org/10.1021/acssensors.0c02597
- Washing- and Separation-Free Electrochemical Detection of Porphyromonas gingivalis in Saliva for Initial Diagnosis of Periodontitis vol.93, pp.13, 2021, https://doi.org/10.1021/acs.analchem.1c00572
- Sensitive electrochemical immunosensor using a bienzymatic system consisting of β-galactosidase and glucose dehydrogenase vol.146, pp.12, 2013, https://doi.org/10.1039/d1an00562f