DOI QR코드

DOI QR Code

Multi-objective Integrated Optimization of Diagrid Structure-smart Control Device

다이어그리드 구조물-스마트 제어장치의 다목적 통합 최적화

  • Received : 2012.11.27
  • Accepted : 2013.01.04
  • Published : 2013.02.28

Abstract

When structural design of a tall building is conducted, reduction of wind-induced lateral displacement is one of the most important problem. For this purpose, additional dampers and vibration control devices are generally considered. In this process, control performance of additional devices are usually investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a tall building with additional smart damping device has been investigated. To this end, a 60-story diagrid building structure is used as an example structure and artificial wind loads are used for evaluation of wind-induced responses. An MR damper is added to the conventional TMD to develop a smart TMD. Because dynamic responses and the amount of structural material and additional smart damping devices are required to be reduced, a multi-objective genetic algorithm is employed in this study. After numerical simulation, various optimal designs that can satisfy control performance requirement can be obtained by appropriately reducing the amount of structural material and additional smart damping device.

초고층 건물의 구조설계시 풍하중에 의한 횡방향 변위를 적절한 값 이내로 줄이는 것이 가장 중요한 문제 중에 하나이다. 이를 위해서 추가적인 감쇠기 및 진동제어장치를 사용하는 방법이 일반적으로 고려되고 있다. 이 때 일반적으로 구조물의 특성은 변화없이 추가되는 제어장치에 대해서만 최적설계를 수행하게 된다. 본 연구에서는 구조물과 스마트 제어장치의 다목적 통합 최적화를 통하여 추가되는 스마트 제어장치로 인하여 구조물의 물량을 줄일 수 있는 가능성을 검토하였다. 이를 위하여 다이어그리드 구조시스템이 적용된 60층 초고층 건물을 예제 구조물로 선택하였고, 인공 풍하중에 대한 풍응답을 검토하였다. 스마트 제어장치로는 TMD에 MR 감쇠기를 설치한 스마트 TMD를 사용하였다. 구조물의 응답과 구조물량 및 제어장치의 용량을 동시에 줄이는 것이 필요하므로 본 연구에서는 다목적 유전자알고리즘을 적용하였다. 수치해석결과 제어성능목표를 만족시키면서 구조물의 물량과 제어장치의 용량을 적절하게 줄일 수 있는 다양한 설계 최적안을 얻을 수 있었다.

Keywords

References

  1. Aldawod, M., Samali, B., Naghdy, F., Kwok, K.C.S. (2001) Active Control of Along wind Response of Tall Building using a Fuzzy Controller, Engineering Structures, 23, pp.1512-1522. https://doi.org/10.1016/S0141-0296(01)00037-2
  2. Bani-Hani, K.A., Sheban M.A. (2006) Semi-active neuro-control for Base-isolation System using Magnetorheological (MR) Dampers, Earthquake Engng Struct. Dyn., 35, pp.1119-1144. https://doi.org/10.1002/eqe.574
  3. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T. (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, Evolutionary Computation, IEEE Transactions, 6(2), pp.182-197.
  4. Dyrbye, C., Hansen, S.O. (1997) Wind Loads on Structures, John Wiley & Sons Ltd, New York.
  5. Koo, J.H., Setareh, M., Murray, T.M. (2004) In Search of Suitable Control Methods for Semi-active Tuned Vibration Absorbers, Journal of Vibration and Control,10, pp.163-174. https://doi.org/10.1177/1077546304032020
  6. Kim, H.S., Kang, J.W. (2012) Semi-active Fuzzy Control of a Wind-excited Tall Building using Multiobjective Genetic Algorithm, Engineering Structures, 41, pp.242-257. https://doi.org/10.1016/j.engstruct.2012.03.038
  7. Moon, K.S., Connor, J.J., Fernandez, J.E. (2007) Diagrid Structural Systems for Tall Buildings: Characteristics and Methodology for Preliminary Design, The Structural Design of Tall and Special Buildings, 16, pp.205-230. https://doi.org/10.1002/tal.311
  8. Ok, S.Y., Park, K.S., Song, J.H, Koh, H.M. (2008) Multi-objective Integrated Optimal Design of Hybrid Structure-damper System Satisfying Target Reliability, Journal of the Earthquake Engineering Society of Korea, 12(2), pp.9-22. https://doi.org/10.5000/EESK.2008.12.2.009
  9. Park, K.S., Koh, H.M. (2004) Preference Based Optimum Design of an Integrated Structural Control System using Genetic Algorithms, Advances in Engineering Software, 35(2), pp.85-94. https://doi.org/10.1016/j.advengsoft.2003.10.004
  10. Park, K.S., Koh, H.M., Hahm, D.G. (2004) Integrated Optimum Design of Viscoelastically Damped Structural Systems, Engineering Structures, 26, pp.581-591. https://doi.org/10.1016/j.engstruct.2003.12.004
  11. Park, K.S., Koh, H.M., Ok, S.Y (2003) Integrated Optimal Design of Hybrid Structural Control System using Multi-stage Goal Programming Technique, Journal of the Earthquake Engineering Society of Korea, 7(5), pp.93-102. https://doi.org/10.5000/EESK.2003.7.5.093
  12. Ramallo, J.C., Johnson, E.A., Spencer Jr., B.F. (2002) "Smart" Base Isolation Systems, Journal of Engineering Mechanics, 128(10), pp.1088-1100. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1088)
  13. Schaffer, J.D. (1985) Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, Proceedings of the First International Conference on Genetic Algorithms, Hillsdale, New Jersey,pp.93-100.
  14. Sues, R.H., Mau, S.T., Wen, Y.K. (1988) System Identifcation of Degrading Hysteretic Restoring Forces, Journal of Engineering Mechanics, ASCE, 114(5), pp.833-846. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:5(833)
  15. Varadarajan, N., Nagarajaiah, S. (2004) Wind Response Control of Building with Variable Stiffness Tuned Mass Damper using Empirical Mode Decomposition/ hilbert Transform, J. Eng. Mech., 130(4), pp.451-458. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(451)
  16. Wittig, L.E., Sinha A.K. (1975) Simulation of Multicorrelated Random Processes using the FFT Algorithm, The Journal of the Acoustical Society of America, 58(3), pp.630-633. https://doi.org/10.1121/1.380702
  17. Zhou, Y., Kijewski, T., Kareem, A. (2003) Aerodynamic Loads on Tall Buildings: An Interactive Database, Journal of Structural Engineering, ASCE, 129(3), pp.394-404. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(394)