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ON ARCWISE CONNECTEDNESS IM KLEINEN
IN HYPERSPACES

Bong Shin Baik a, ∗ and Choon Jai Rhee b

Abstract. Let X be a space and 2X(C(X),K(X), CK(X)) denote the hyperspace
of nonempty closed subsets(connected closed subsets, compact subsets, subcontinua)
of X with the Vietoris topology. We investigate the relationships between the space
X and its hyperspaces concerning the properties of connectedness im kleinen. We
obtained the following : Let X be a locally compact Hausdorff space. Let x ∈ X.
Then the following statements are equivalent: (1) X is connected im kleinen at x.
(2) 2X is arcwise connected im kleinen at {x}. (3) K(X) is arcwise connected im
kleinen at {x}. (4) CK(X) is arcwise connected im kleinen at {x}. (5) C(X) is
arcwise connected im kleinen at {x}.

0. Introduction

Let X be a topological space. Let 2X = {E ⊂ X : E is nonempty and closed},
Fn(X) = {E ∈ 2X : E has at most n elements}, F(X) = {E ∈ 2X : E is finite},
K(X) = {E ∈ 2X : E is compact}, C(X) = {E ∈ 2X : E is connected}, CK(X) =
K(X) ∩ C(X).

In 1998, Goodykoontz[3] proved that a Hausdorff space X is connected im kleinen
at x ∈ X if and only if 2X(K(X), CK(X)) is connected im kleinen at {x}(Result
2.D) and a locally compact Hausdorff space X is connected im kleinen at x ∈ X if
and only if 2X(K(X), CK(X), C(X)) is connected im kleinen at {x}(Result 2.F).
In this paper, we will prove that a Hausdorff space X is connected im kleinen at
x ∈ X if and only if Fn(X)(F(X)) is connected im kleinen at {x}(Theorem 2.1) and
a locally compact Hausdorff space X is connected im kleinen at x ∈ X if and only
if 2X(K(X), CK(X), C(X)) is arcwise connected im kleinen at {x}(Theorem 2.2).

For notational purposes, small letters will denote elements of X, capital letters
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will denote subsets of X and elements of 2X , and script letters are reserved for
subsets of 2X . If B ⊂ 2X , ∪B = {A : A ∈ B}. If A ⊂ X, A, Int(A), Bd(A) will
denote the closure, interior, boundary of A in X respectively.

1. Preliminaries

Let U1, U2,..., Un be a collection of subsets of X. Let < U1, U2, ..., Un > to be
the set of all E ∈ 2X such that E ⊂ ∪i=n

i=1Ui and E ∩ Ui 6= ∅ for each i = 1, 2, ..., n.
If (X, T ) is a topological space, then the Vietoris (finite) topology Tv on 2X is

the one generated by the collection of the form < U1, ..., Un > with U1, U2,... ,Un

open subsets of X.
The topology on each of Fn(X), F(X), K(X), C(X), CK(X) is the subspace

topology induced by the Vietoris topology on 2X .

Result 1.A ([5]). Let (X, T ) be a topological space. then the collection of the form
< U1, ..., Un > with U1, U2,..., Un open in X, form a basis for the finite topology on
2X .

Result 1.B ([5]). Let (X, T ) be a toplogical space. Then:

(a) {E ∈ 2X : E ⊂ A} is closed in 2X if A ⊂ X is closed.
(b) {E ∈ 2X : E ∩A 6= ∅} is closed in 2X if A ⊂ X is closed.

Proposition 1.1. Let X be a T1 space. Then the natural map i : X → 2X defined
by i(x) = {x} for each x ∈ X is continuous. Since X is a T1 space, each singleton
set {x} is a member of 2X . And any neighborhood of {x} in 2X has the form < U >,
where U is open in X so that i(U) ⊂< U >. Hence i is continuous. Furthermore, i

is a homeomorphism between X and the subspace F1(X).

Result 1.C ([5]). Let X be a T1 space. Then

(a) < U1, ..., Un >⊂< V1, ..., Vm > if and only if ∪n
i=1Ui ⊂ ∪m

i=1Vi, and for each
Vi there exists a Uj such that Uj ⊂ Vi.

(b) < U1, ..., Un > =< U1, ..., Un >.
(c) If {Uα}α∈A is a neighborhood basis at x ∈ X, then {< Uα >}α∈A is a

neighborhood basis at {x} in 2X .
(d) If O is an open set in 2X , then ∪O is open in X.

On the other hand, if U is open in X, then 2U =< U > is open in 2X .

Proposition 1.2. Let X be a T1 space. If U is an open set in the subspace K(X),
then ∪U is open in X.



ON ARCWISE CONNECTEDNESS IM KLEINEN IN HYPERSPACES 73

Proposition 1.3. Let X be a T1 space. If U is an open subset of the subspace
F(X), then ∪U is open in X.

Proposition 1.4. Let X be a T1 space. If U is an open set in Fn(X), then ∪U is
open in X.

A T1 space X is call regular if each x ∈ X and closed set A not containing x have
disjoint neighborhoods.

Proposition 1.5. (a) Suppose X is a locally connected regular space. If U is an
open set in the subspace C(X), then ∪U is open in X.

(b) Suppose X is a locally compact and locally connected Hausdorff space. If O
is an open subset of the subspace CK(X), then ∪O is open in X.

Result 1.D ([5]). (a) Let X be a T1 space. Then F(X) is dense in 2X .
(b) If X is Hausdorff, the Fn(X) is closed in 2X for each n.
(c) Let X be a T1 space. Then the natural map f : Xn → Fn(X), defined by

f((x1, ..., xn)) = {x1, ..., xn}, is continuous, surjective, and open.

Remark 1.D’. (1) Assertion (c) is false for infinite product.
(2) There is a Hausdorff space X such that no Fn(X) is dense in 2X . Let X

be an infinite Hausdorff space. For a fixed n, let U1, ..., Un+1 be pairwise disjoint
nonempty open subsets of X. Then Fn(X) ∩ < U1, ..., Un+1 >= ∅. Hence for a
Hausdorff space X, X is finite if and only if Fn(X) is dense in 2X for some n.

(3) A space X is discrete if and only if 2X is discrete.

Proposition 1.6. Let X be a T1 space. Then K(X) is dense in 2X .

Result 1.E ([5]). (a) Let X be a regular space. Then ∪B = ∪{E : E ∈ B} ∈ 2X ,
for each B ∈ K(2X).

(b) Let X be a space (no separation axiom is assumed). Then ∪B ∈ K(X), for
each B ∈ K(K(X)).

Result 1.F ([5]). Let X be a topological space. If B is a connected subset of 2X

which also contains at least one connected element, then ∪B is connected in X.

Proposition 1.7. Let X be a topological space. If B is a connected subset of Fn(X)
(F(X), K(X)) which contains a connected element, then ∪B is connected in X.

In particular, if B is a connected subset of CK(X) (or C(X)), then ∪B is con-
nected.



74 Bong Shin Baik & Choon Jai Rhee

Example 1.7.1. (1) We give an example of a connected subset B of 2X which
contains no connected element and ∪B is not connected.
Let X be the space of reals. Let U1 and U2 be connected open set such that
U1 ∩ U2 = ∅. Let B =< U1, U2 > (or B =< U1, U2 > ∩ F(X). Then by Proposition
4.11 in [5], B is connected and ∪B = U1 ∪ U2.

(2) Here is an example of a connected subset B of F2(X) which contains no con-
nected element such that ∪B is disconnected. Let X be the space of the reals. Let
U1 and U2 be disjoint connected open sets in X. Let B =< U1, U2 > ∩ F2(X). Then
B is the continuous image of the connected set U1 × U2 by Result 1.D.(c). Hence B
is connected. And ∪B = U1 ∪ U2.

(3) This is an example of a disconnected subset B of 2X which contains no
connected element such that ∪B is connected. Let X be the space of reals. Let
A = [0, 1] ∪ {2}, B = [1, 2] ∪ {0}, and B = {A,B}. Then ∪B = [0, 2].

Result 1.G ([2]). Let X be a T1 space. Let U be a connected open set and
U1, · · · , Un be nonempty open sets such that U = ∪n

i=1Ui. Then < U1, .., Un >

is connected in 2X .

Result 1.H ([4]). If X is a compact connected Hausdorff space, then 2X and C(X)
are (arcwise) connected.

2. Connectedness im Kleinen and Arcwise Connectedness
im Kleinen

Definition 2.1. The space X is locally connected at x ∈ X provided that for each
neighborhood U of x there is a connected neighborhood V of x such that V ⊂ U .
The space X is connected im kleinen at x provided for each neighborhood U of x

there is a component of U which contains x in its interior. The space X is locally
connected provided that X is locally connected at each of its points. If a space X is
connected im kleinen at each of its points, then X is locally connected.

Definition 2.2. The space X is locally arcwise connected at x provided that for each
neighborhood U of x there is an arcwise connected neighborhood V of x such that
V ⊂ U . The space X is locally arcwise connected provided that X is locally arcwise
connected at each of its points. The space X is arcwise connected im kleinen at x

provided for each neighborhood U of x there is an arcwise connected, component of
U which contains x in its interior. If a space X is arcwise connected im kleinen at
each of its points, then X is locally arcwise connected.
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Result 2.A ([6]). Let X be a locally compact Hausdorff space. Let A1, A2 ∈ U =<

U1, · · · , Un > ∩K(X), Ui open. Then there exists an arc in U between A1 and A2

if and only if there exists an element B ∈ U such that Ai ⊂ B, i = 1, 2 and each
component of B intersects Ai, i = 1, 2.

Proposition 2.1. X is connected im kleinen at x if and only if for each open set
U containing x, there exists an open set V containing x such that for each y ∈ V ,
there exists a connected subset Cy of U containing x and y.

Proof. Suppose that X is connected im kleinen at x. Let U be an open set containing
x. Then there exists a component M of U containing x in its interior and so
V = Int(M).

Conversely, let U be an open set containing x. Then there exists an open neigh-
borhood V of x such that for each y ∈ V , there exists a connected subset Cy of U

containing x and y. Then M = ∪y∈V Cy , x ∈ Int(M) ⊂ U and M is connected. ¤

Result 2.B ([3]). Let X be a Hausdorff space. Then the following are equivalent:

(1) X is connected;
(2) Fn(X) is connected;
(3) F(X) is connected:
(4) CK(X) is connected;
(5) K(X) is connected;
(6) 2X is connected.

Result 2.C ([3]). Let X be a Hausdorff space. Let x ∈ X. Then X is connected
im kleinen at x if and only if CK(X) is connected im kleinen at {x}.
Result 2.D ([3]). Let X be a Hausdorff space. Let x ∈ X. Then the following
statements are equivalent:

(1) X is connected im kleinen at x

(2) 2X is connected im kleinen at {x}
(3) K(X) is connected im kleinen at {x}
(4) CK(X) is connected im kleinen at {x}.

Remark 2.D’. The equivalence of (1), (2), and (3) above when ”connected im
kleinen” is replaced by ”locally connected” is given in [1].

Theorem 2.1. Let X be a Hausdorff space. Let x ∈ X. Then the following
statements are equivalent:
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(1) X is connected im kleinen at x

(2) Fn(X) is connected im kleinen at {x}
(3) F(X) is connected im kleinen at {x}.

Proof. (1)⇒(2). Suppose that X is connected im kleinen at x. Let < U > ∩
Fn(X) be a basic open set containing {x}. Since X is connected im kleinen at
x and x ∈ U , U has the component C containing x in its interior. Let V be an
open set containing x such that x ∈ V and V ⊂ Int(C). Then {x} ∈< V > ∩
Fn(X) ⊂< C > ∩ Fn(C) ⊂ Fn(C) ⊂< U > ∩ Fn(X) and Fn(C) is connected by
Result 2.B. Hence < U > ∩ Fn(X) has a component containing {x} in its interior.
(2)⇒(1). Suppose that Fn(X) is connected im kleinen at {x}. Let U be an open set
such that x ∈ U . Since Fn(X) is connected im kleinen at {x}, there is a component
L of < U > ∩ Fn(X) containing {x} in its interior. Let V be an open set such that
{x} ∈< V > ∩ Fn(X) ⊂ L ⊂< U > ∩ Fn(X). Then x ∈ V ⊂ ∪L ⊂ U . Since ∪L is
connected by Proposition 1.7, U contains a component containing x in its interior.
Hence X is connected im kleinen at x. Proof for (1)⇔(3) is very much similar to
above. ¤

Result 2.E ([2]). Let X be a locally compact Hausdorff space. Let x ∈ X. Then X

is connected im kleinen at x if and only if C(X) is connected im kleinen at {x}.
Proof. Suppose that X is connected im kleinen at x. Let < U > ∩ C(X) be a
basic open set in C(X) containing {x}. Let V be a neighborhood of x with compact
closure such that V ⊂ U . Then there exists a component M of V which contains x

in its interior. Let W = Int(M). Then {x} ∈ < W > ∩ C(X) ⊂ < V > ∩ C(X)
⊂ < U > ∩ C(X). If E ∈ < W > ∩ C(X), then E ∈ CK(X). Then C(E) is a
connected subset of < V > ∩ C(X) by Result 1.H. Since C(E) ∩ F1(M) 6= ∅, C(E)
∪ F1(M) is connected and is contained in < V > ∩ C(X). It follows that there is
a connected subset of < V > ∩ C(X) which contains {x} in its interior.

The proof of the converse is the same as the corresponding proof in Corollary 4
of [2]. ¤

Result 2.F ([3]). Let X be a locally compact Hausdorff space. Let x ∈ X. Then
the following statements are equivalent:

(1) X is connected im kleinen at x

(2) 2X is connected im kleinen at {x}
(3) K(X) is connected im kleinen at {x}
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(4) CK(X) is connected im kleinen at {x}
(5) C(X) is connected im kleinen at {x}.

Theorem 2.2. Let X be a locally compact Hausdorff space. Let x ∈ X. Then the
following statements are equivalent:

(1) X is connected im kleinen at x.
(2) 2X is arcwise connected im kleinen at {x}.
(3) K(X) is arcwise connected im kleinen at {x}.
(4) CK(X) is arcwise connected im kleinen at {x}.
(5) C(X) is arcwise connected im kleinen at {x}.

Proof. (1)⇒(2). Suppose that X is connected im kleinen at x. Let < U > be
a basic open in 2X containing {x}. Since X is connected im kleinen at x and
x ∈ U , U has a component M containing x in its interior. Let V be an open set
containing x such that x ∈ V , V compact, and V ⊂ Int(M). Let W = Int(M) and
E ∈< W > ∩K(V ). Then {x} ⊂ M, M ∈ K(V ). So by Result 2.A, there exists an
arc in < U > ∩K(V ) ⊂< U > between {x} and E. Hence 2X is arcwise connected
im kleinen at {x}.

(1)⇒(3). We can see easily (1)⇒(3) in similar way of (1)⇒(2).
(1)⇒(4). Suppose that X is connected im kleinen at x. Let < U > ∩CK(X) be a

basic open set containing {x}. Then x ∈ U and there exists an open set V containing
x such that V compact and V ⊂ U . Since X is connected im kleinen at x, there
is a component M of V which contains x in its interior. Let W = Int(M). Then
x ∈ W ⊂ M ⊂ V , {x} ∈< W > ∩CK(X) ⊂< V > ∩CK(X) ⊂< U > ∩CK(X).
Let E ∈< W > ∩CK(X). Then {x} ⊂ M, E ⊂ M , and M ∈ CK(X). So
M ∈< V > ∩CK(X). Hence by Result 2.A, there exists an arc in < V > ∩CK(X)
between {x} and E. So CK(X) is arcwise connected im kleinen at {x}.

(1)⇒(5). Suppose that X is connected im kleinen at x. Let < U > ∩C(X) be
a basic open set in C(X) containing {x}. Then x ∈ U and there exists an open
set V containing x such that V compact and V ⊂ U . Since X is connected im
kleinen at x, there is a component M of V which contains x in its interior. Let
W = Int(M). Then {x} ∈< W > ∩C(X) ⊂< V > ∩C(X) ⊂< U > ∩C(X).
If E ∈< W > ∩C(X), then E ∈ CK(X). And C(E) is a connected subset of
< V > ∩C(X) by Result 1.H. Since E ∈ C(M) and C(M) = CK(M), {x} ⊂ M and
E ⊂ M , there exists an arc in < W > ∩C(M) ⊂< U > ∩C(X) between {x} and E.
Thus C(X) is connected im kleinen at {x}.
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(2)⇒(1). If X is arcwise connected im kleinen at x ∈ X, then X is connected im
kleinen at x. So if 2X is arcwise connected im kleinen at {x}, then 2X is connected
im kleinen at {x}. Hence by above Result, X is connected im kleinen at x.

We can obtain (3)⇒(1), (4)⇒(1), (5)⇒(1) in the same way of (2)⇒(1). ¤
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