J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2013.20.1.51 Volume 20, Number 1 (February 2013), Pages 51–57

APPROXIMATING COMMON FIXED POINTS OF A SEQUENCE OF ASYMPTOTICALLY QUASI-*f*-*g*-NONEXPANSIVE MAPPINGS IN CONVEX NORMED VECTOR SPACES

BYUNG-SOO LEE

ABSTRACT. In this paper, we introduce asymptotically quasi-f-g-nonexpansive mappings in convex normed vector spaces and consider approximating common fixed points of a sequence of asymptotically quasi-f-g-nonexpansive mappings in convex normed vector spaces.

1. INTRODUCTION AND PRELIMINARIES

Now we introduce asymptotically quasi-f-g-nonexpansive mappings and asymptotically f-g-nonexpansive mappings with convex normed vector spaces.

Definition 1.1. Let $(X, \|\cdot\|)$ be a normed vector space, $T : (X, \|\cdot\|) \to (X, \|\cdot\|)$ be a self-mapping and $f, g : (X, \|\cdot\|) \to (0, \infty)$ be functions.

(i) T is said to be asymptotically f-g-nonexpansive if there exist two sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ in X such that

$$\lim_{n \to \infty} f(x_n) = 1 \text{ and } \lim_{n \to \infty} g(y_n) = 0$$

satisfying

$$|T^n x - T^n y|| \le f(x_n) \cdot ||x - y|| + g(y_n)$$
 for $x, y \in X$

(ii) T is said to be asymptotically quasi-f-g-nonexpansive if there exist two sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ in X such that

$$\lim_{n \to \infty} f(x_n) = 1 \text{ and } \lim_{n \to \infty} g(y_n) = 0$$

 \bigodot 2013 Korean Soc. Math. Educ.

Received by the editors November 27, 2012. Accepted January 21, 2013.

²⁰¹⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. implicit iteration, asymptotically quasi-f-g-nonexpansive mappings, convex structure, convex normed vector space.

This research was supported by Kyungsung University Research Grants in 2012.

BYUNG-SOO LEE

satisfying

$$||T^n x - p|| \le f(x_n) \cdot ||x - p|| + g(y_n) \quad \text{for } p \in F(T) \quad \text{and} \quad x \in X,$$

where F(T) is the set of fixed points of T.

Example 1.1. Let $(X, \|\cdot\|)$ be the 2-dimensional Euclidean normed vector space $(\mathbb{R}^2, \|\cdot\|), T: (\mathbb{R}^2, \|\cdot\|) \to (\mathbb{R}^2, \|\cdot\|)$ be a self-mapping defined by $T((x_1, x_2)) = (\frac{1}{2}x_1, \frac{1}{3}x_2)$ for $(x_1, x_2) \in \mathbb{R}^2$ and $f, g: (\mathbb{R}^2, \|\cdot\|) \to (0, \infty)$ be two functions defined by $f((x_1, x_2)) = \frac{1}{x_1^2 + x_2^2}, g((x_1, x_2)) = x_1^2 + x_2^2$ for $x = (x_1, x_2) \in \mathbb{R}^2$, respectively. Take two sequences $\langle x_n \rangle = \langle (x_{1n}, x_{2n}) \rangle$ and $\langle y_n \rangle = \langle (y_{1n}, y_{2n}) \rangle$ in \mathbb{R}^2 such that $x_{1n} = \frac{1}{\sqrt{3}}, x_{2n} = \frac{\sqrt{2}}{\sqrt{3}}$ and $y_{1n} = \frac{1}{n}, y_{2n} = \frac{1}{2n}$ for $n \in \mathbb{N}$, respectively. Then $F(T) = \{(0,0)\}$. For $x = (x_1, x_2) \in \mathbb{R}^2$ and $p = (0,0) \in F(T)$, we have

$$||T^n x - p|| = \left\| \left(\frac{1}{2^n} x_1, \frac{1}{3^n} x_2 \right) \right\|$$
$$= \sqrt{\frac{1}{2^{2n}} x_1^2 + \frac{1}{3^{2n}} x_2^2},$$

$$f(x_n) \cdot \|x - p\| + g(y_n) = \frac{1}{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2} \cdot \sqrt{x_1^2 + x_2^2} + \left(\frac{1}{n^2} + \frac{1}{(2n)^2}\right)$$
$$= \sqrt{x_1^2 + x_2^2} + \left(\frac{1}{n^2} + \frac{1}{(2n)^2}\right),$$
$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{\left(\frac{1}{\sqrt{3}}\right)^2} + \frac{1}{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2} = 1,$$
$$\lim_{n \to \infty} g(y_n) = \lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{1}{4n^2}\right) = 0.$$

Thus, we have

$$||T^n x - p|| \le f(x_n) \cdot ||x - p|| + g(y_n)$$
 for $p \in F(T)$ and $x \in X$.

which shows that the mapping T is asymptotically quasi-f-g-nonexpansive.

Definition 1.2 ([1, 3]). Let $(X, \|\cdot\|)$ be a normed vector space. A mapping $W : X^3 \times I^3 \to X$ is called a *convex structure* on X, if it satisfies the following condition; For any $(x, y, z) \in X^3$ and $(a, b, c) \in I^3$ with a + b + c = 1,

$$||W(x, y, z; a, b, c) - u|| \le a \cdot ||x - u|| + b \cdot ||y - u|| + c \cdot |z - u||$$

for all $u \in X$, where I = [0, 1].

52

A normed vector space $(X, \|\cdot\|)$ with a convex structure W is called a *convex* normed vector space and is denoted as $(X, \|\cdot\|, W)$. A nonempty subset C of a convex normed vector space $(X, \|\cdot\|, W)$ is said to be a *convex subset* of $(X, \|\cdot\|)$, if $W(x, y, z; a, b, c) \in C$ for $(x, y, z) \in C^3$ and $(a, b, c) \in I^3$ with a + b + c = 1.

2. MAIN RESULTS

A convex normed vector space becomes a convex metric space if we define a metric d by d(x, y) = ||x - y|| for $x, y \in X$. When we speak about metric properties in a normed vector space, we referring to this metric. It should be pointed out that each normed vector space is a special example of convex metric space, but there exist some convex metric spaces which can not be embedded into any normed spaces [5].

Now, we introduce a new implicit iteration process;

(2.1)
$$x_{n+1} = W(x_n, T_i^n x_n, T_i^n x_{n+1}; \alpha_{n+1}, \beta_{n+1}, \gamma_{n+1}),$$

where $T_i : C \to C$ is an asymptotically quasi- f_i - g_i -nonexpansive mapping of a nonempty convex subset C of $(X, \|\cdot\|, W)$ for functions $f_i, g_i : (X, \|\cdot\|) \to (0, \infty)$ $(i \in \mathbb{N})$ and sequences $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ in I satisfying $\alpha_n + \beta_n + \gamma_n = 1$ $(n \in \mathbb{N})$.

Now we consider the approximating common fixed points of a sequence of quasi-f-g-nonexpansive mappings in convex normed vector spaces.

Lemma 2.1 ([4]). Let $\langle a_n \rangle$, $\langle b_n \rangle$ and $\langle \delta_n \rangle$ be sequences of nonnegative real numbers satisfying the following inequality $a_{n+1} \leq (1+\delta_n)a_n + b_n$, $n \geq 1$. If $\sum_{n=1}^{\infty} \delta_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then the limit $\lim_{n \to \infty} a_n$ exists.

Theorem 2.1. Let C be a nonempty closed convex subset of a real complete convex normed vector space $(X, \|\cdot\|, W)$. Let $\langle T_i : i \in \mathbb{N} \rangle$ be a sequence of asymptotically quasi- f_i - g_i -nonexpansive mappings of C with sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ in X such that $\lim_{n \to \infty} f_i(x_n) = 1$, $\lim_{n \to \infty} g_i(y_n) = 0$ and $g_i(y_1) = 0$ for $i \in \mathbb{N}$. Suppose that $F = \bigcap_{i=1}^{\infty} F(T_i)$ is nonempty closed. Let $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ be sequences in I satisfying $\alpha_n + \beta_n + \gamma_n = 1$ for $n \ge 1$. Starting from an arbitrarily given $x_0 \in K$, we define the sequence $\langle x_n \rangle_{n \ge 1}$ by (2.1). Then the following are equivalent,

- (i) $\langle x_n \rangle$ converges strongly to a common fixed point of the mappings $\langle T_i : i \in \mathbb{N} \rangle$,
- (ii) $\underline{\lim} d(x_n, F) = 0$, where $d(x_n, F) = \inf_{p \in F} ||x_n p||$.

Byung-Soo Lee

Proof. Obviously, (ii) implies (i). Now we show that (i) implies (ii). For $p \in F$,

$$||x_{n+1} - p|| = ||W(x_n, T_i^n x_n, T_i^n x_{n+1}; \alpha_{n+1}, \beta_{n+1}, \gamma_{n+1}) - p||$$

$$\leq \alpha_{n+1} \cdot ||x_n - p|| + \beta_{n+1} \cdot ||T_i^n x_n - p|| + \gamma_{n+1} \cdot ||T_i^n x_{n+1} - p||$$

$$\leq \alpha_{n+1} \cdot ||x_n - p|| + \beta_{n+1} \cdot f_i(x_n) \cdot ||x_n - p|| + g_i(y_n)$$

$$+ \gamma_{n+1} \cdot f_i(x_n) \cdot ||x_{n+1} - p|| + g_i(y_n) \text{ for } x, y \in C$$

For arbitrary positive number ε , take a natural number K so that

$$f_i(x_n) < 1 + \varepsilon, \ g_i(y_n) < \varepsilon, \ \sum_{n=0}^{\infty} s_n < \infty \ \text{ and } \ \sum_{n=0}^{\infty} t_n < \infty,$$

here $s_n = \frac{(1 - \alpha_{n+1}) \cdot \varepsilon}{1 - \gamma_{n+1} \cdot (1 + \varepsilon)}$ and $t_n = \frac{2 \cdot \varepsilon}{1 - \gamma_{n+1} \cdot (1 + \varepsilon)}$ for $n \ge K$.

From (2.2) we obtain, for $n \ge K$,

$$\|x_{n+1} - p\| \le \alpha_{n+1} \cdot \|x_n - p\| + \beta_{n+1} \cdot (1 + \varepsilon) \cdot \|x_n - p\| + \gamma_{n+1} \cdot (1 + \varepsilon) \cdot \|x_{n+1} - p\| + 2 \cdot \varepsilon.$$

Hence

W

$$(2.3)$$

$$(1 - \gamma_{n+1} \cdot (1 + \varepsilon)) \cdot \|x_{n+1} - p\| \le \alpha_{n+1} \cdot \|x_n - p\| + \beta_{n+1} \cdot (1 + \varepsilon) \cdot \|x_n - p\| + 2 \cdot \varepsilon$$

$$= (\alpha_{n+1} + \beta_{n+1} \cdot (1 + \varepsilon)) \cdot \|x_n - p\| + 2 \cdot \varepsilon \text{ for } n \ge K,$$

The inequality (2.3) shows that

$$\begin{aligned} \|x_{n+1} - p\| &\leq \left(\frac{\alpha_{n+1} + \beta_{n+1} \cdot (1+\varepsilon)}{1 - \gamma_{n+1} \cdot (1+\varepsilon)}\right) \|x_n - p\| + \frac{2 \cdot \varepsilon}{1 - \gamma_{n+1} \cdot (1+\varepsilon)} \\ &= (1+s_n) \|x_n - p\| + t_n. \end{aligned}$$

Since $p \in F$ is arbitrary,

$$||d(x_{n+1}, F)|| \le (1+s_n)||d(x_n, F)|| + t_n.$$

Thus by Lemma 2.1, $\lim_{n\to\infty} \|d(x_{n+1},F)\|$ exists. Since $\lim_{n\to\infty} \|d(x_n,F)\| = 0$ and $\sum_{n=0}^{\infty} t_n < \infty$, for arbitrary positive number ε , there exists a natural number $N_0 \in \mathbb{N}$ such that

$$||d(x_n, F)|| \le \frac{\varepsilon}{4L}$$
 for $n \ge N_0$

and

$$\sum_{n=N_0}^{\infty} t_n \leq \frac{\varepsilon}{2L}, \quad \text{where } L = e^{\sum_{j=1}^{M} s_{n+m-j}}.$$

In particular, there exists a point $p_1 \in F$ and $N_1 > N_0$ such that

$$\|x_{N_1} - p_1\| \le \frac{\varepsilon}{4L}.$$

On the other hand, from the fact that

$$||x_{n_1} - p|| \le (1 - s_n)||x_n - p|| + t_n$$

and the inequality $1 + x \le e^x$ for $x \ge 0$, we obtain that

$$\begin{aligned} \|x_{n+m} - p\| &\leq (1 + s_{n+m-1}) \cdot \|x_{n+m-1} - p\| + t_{n+m-1} \\ &\leq e^{s_{n+m-1}}[(1 + s_{n+m-2}) \cdot \|x_{n+m-2} - p\| + t_{n+m-2}] + t_{n+m-1} \\ &\leq e^{\sum_{j=1}^{2} s_{n+m-j}}[(1 + s_{n+m-3}) \cdot \|x_{n+m-3} - p\| + t_{n+m-3}] \\ &+ e^{s_{n+m-1}} \cdot t_{n+m-2} + t_{n+m-1} \\ &\leq e^{\sum_{j=1}^{2} s_{n+m-j}}[(1 + s_{n+m-4})\|x_{n+m-4} - p\| + t_{n+m-4}] \\ &+ e^{\sum_{j=1}^{2} s_{n+m-j}} \cdot t_{n+m-3} + e^{s_{n+m-1}} \cdot t_{n+m-2} + t_{n+m-1} \\ &= e^{\sum_{j=1}^{4} s_{n+m-j}} \|x_{n+m-4} - p\| + e^{\sum_{j=1}^{3} s_{n+m-j}} \cdot t_{n+m-4} \\ &+ e^{\sum_{j=1}^{2} s_{n+m-j}} \cdot t_{n+m-3} + e^{s_{n+m-1}} \cdot t_{n+m-2} + t_{n+m-1} \\ &\leq \\ &\vdots \\ &\leq e^{\sum_{j=1}^{m} s_{n+m-j}} \cdot \|x_m - p\| + e^{\sum_{j=1}^{m-1} s_{n+m-j}} \cdot t_n + \dots + e^{\sum_{j=1}^{3} s_{n+m-j}} \cdot t_{n+m-4} \\ &+ e^{\sum_{j=1}^{2} s_{n+m-j}} \cdot t_{n+m-3} + e^{s_{n+m-1}} \cdot t_{n+m-2} + t_{n+m-1} \\ &\leq \\ &\vdots \\ &\leq L \cdot \|x_n - p\| + L \cdot \sum_{j=1}^{m+m-1} t_j. \end{aligned}$$

Thus for $n > N_1$,

(2.4)
$$\|x_{n+m} - p_1\| = \|x_{N_1 + (n+m-N_1)} - p_1\|$$
$$\leq L \cdot \|x_{N_1} - p_1\| + L \cdot \sum_{j=N_1}^{n+m-1} t_j$$

and

(2.5)
$$\|x_n - p_1\| = \|x_{N_1 + (n - N_1)} - p_1\|$$
$$\leq L \cdot \|x_{N_1} - p_1\| + L \cdot \sum_{j=N_1}^{n-1} t_j$$

Hence from (2.4) and (2.5), we obtain that

$$\begin{aligned} \|x_{n+m} - x_n\| &\leq \|x_{n+m} - p_1\| + \|p_1 - x_n\| \\ &\leq L \cdot \|x_{N_1} - p_1\| + L \cdot \sum_{j=N_1}^{n+m-1} t_j + L \cdot \|x_{N_1} - p_1\| + L \cdot \sum_{j=N_1}^{n-1} t_j \\ &\leq 2L \cdot \|x_{N_1} - p_1\| + L \cdot \left(\sum_{j=N_1}^{n+m-1} t_j + \sum_{j=N_1}^{n-1} t_j\right) \\ &\leq 2L \cdot \frac{\varepsilon}{4L} + 2 \cdot L \cdot \sum_{j=N_1}^{n+m-1} t_j \\ &\leq 2L \cdot \frac{\varepsilon}{4L} + 2 \cdot L \cdot \frac{\varepsilon}{2L} \\ &= \varepsilon \end{aligned}$$

Hence $\{x_n\}$ is a Cauchy sequence in a closed convex subset C of a real complete convex normed vector space $(X, \|\cdot\|, W)$. Therefore the sequence $\{x_n\}$ converges to a point of C. Let $\lim_{n \to \infty} x_n = p^*$. Now we will show that $p^* \in F$. Let $\{p_n\}$ be a sequence in F such that $p_n \to p'$. Since

$$\begin{aligned} \|p' - T_i p'\| &\leq \|p' - p_n\| + \|T_i p' - p_n\| \\ &\leq \|p' - p_n\| + |f_i(x_1)| \cdot \|p' - p_n\| + |g_i(y_1)| \to 0 \ (\text{as} \ n \to \infty), \end{aligned}$$

 $||p' - T_i p'|| = 0$ for $i \in \mathbb{N}$. Thus $p' \in F$, which means that F is closed. Since

$$d(p^*, F) = \lim_{n \to \infty} d(p_n, F) = 0,$$

we have $p^* \in F$, which completes the proof.

Remark 2.1. (i) We obtain the same results for asymptotically f-g-nonexpansive mappings as a corollary.

(ii) We obtain the same results for asymptotically (quasi) nonexpansive mappings [2, 4, 6].

56

References

- 1. B.S. Lee: Strong convergence theorems with a Noor-type iterative scheme in convex metric spaces. *Comput. Math. Appl.* **61** (2011) 3218-3225.
- Q.H. Liu: Iterative sequences for asymptotically quasi-nonexpansive mappings with errors number. J. Math. Anal. Appl. 259 (2001) 18-24.
- Q.Y. Liu, Z.B. Liu & N.J. Huang: Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric spaces. *Appl. Math.* & Comp. 216 (2010), 883-889.
- M.O. Osilike & S.C. Aniagbosor: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings. *Math. Comput. Model.* 32 (2000), 1181-1191.
- W. Takahashi: A convexity in metric space and nonexpansive mappings. I. Kodai Math. Sem. Rep. 22 (1976), 142-149.
- Y.X. Tian: Convergence of an Ishikawa type iterative scheme for asymptotically quasinonexpansive mappings. *Comput. Math. Appl.* 49 (2005) 1905-1912.

DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, BUSAN 608-736, KOREA *Email address*: bslee@ks.ac.kr