FILTERS OF BE-ALGEBRAS BASED ON FUZZY SET THEORY

Young Bae Jun^a, Sun Shin Ahn^{b,*} and Kyoung Ja Lee^c

ABSTRACT. The fuzzification of filters in BE-algebras is discussed. Characterizations of a fuzzy filter of BE-algebras are given. An answer to the following question is provided.

Question. Let Λ be a subset of [0, 1] containing a maximal element m > 0 and let $\mathscr{F} := \{F_{\alpha} \mid \alpha \in \Lambda\}$ be a decreasing chain of filters of a *BE*-algebra *X*. Then does there exist a fuzzy filter μ of *X* such that $\mu(X) = \Lambda$ and $\mathscr{F}_{\mu} = \mathscr{F}$?

1. INTRODUCTION

As a generalization of a BCK-algebra, Kim et al. [2] introduced the notion of a BE-algebra, and using the notion of upper sets they gave an equivalent condition of the filter in BE-algebras. Ahn et al. [1] dealt with ideal theory in BE-algebras. Walendziak [3] investigated the relationship between BE-algebras, implicative algebras, and J-algebras. He defined commutative BE-algebras, and showed that commutative BE-algebras are equivalent to the commutative dual BCK-algebras.

The goal of this paper is to consider the fuzzification of filters in BE-algebras. We discuss characterizations of fuzzy filter, and provide conditions for a fuzzy set to be a fuzzy filter. We pose a question and answer to this question.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras of type $\tau = (2,0)$. By a *BE-algebra* we mean a system $(X; *, 1) \in K(\tau)$ in which the following axioms hold (see [2]):

- $(2.1) \qquad (\forall x \in X) \ (x * x = 1);$
- $(2.2) \qquad (\forall x \in X) \, (x * 1 = 1);$

$$(2.3) \qquad (\forall x \in X) (1 * x = x);$$

Received by the editors August 27, 2012. Revised January 13, 2013. Accepted Feb. 13, 2013. 2010 *Mathematics Subject Classification*. 06F35, 03G25, 08A72.

*Corresponding author.

© 2013 Korean Soc. Math. Educ.

 $Key\ words\ and\ phrases.\ BE-algebra,\ fuzzy\ filter,\ upper\ set.$

(2.4)
$$(\forall x, y, z \in X) (x * (y * z) = y * (x * z)) \quad (\text{exchange}).$$

A relation " \leq " on a *BE*-algebra *X* is defined by

$$(2.5) \qquad (\forall x, y \in X) \, (x \le y \iff x \ast y = 1).$$

A *BE*-algebra (X; *, 1) is said to be *transitive* (see [1]) if it satisfies:

(2.6)
$$(\forall x, y, z \in X) (y * z \le (x * y) * (x * z))$$

A *BE*-algebra (X; *, 1) is said to be *self distributive* (see [2]) if it satisfies:

(2.7)
$$(\forall x, y, z \in X) (x * (y * z) = (x * y) * (x * z)).$$

Note that every self distributive BE-algebra is transitive, but the converse is not true in general (see [1]).

A nonempty subset F of a BE-algebra X is called a *filter* of X (see [2]) if it satisfies:

$$(2.8) 1 \in F,$$

(2.9)
$$(\forall x \in F)(\forall y \in X) (x * y \in F \Rightarrow y \in F).$$

For any fuzzy set μ in a set X, the range (also called image) of μ , denoted by $\mu(X)$, is the set

(2.10)
$$\mu(X) = \{\mu(x) \mid x \in X\}.$$

The level sets of the fuzzy set μ are denoted by $U(\mu; \alpha), \alpha \in [0, 1]$, and are given by

(2.11)
$$U(\mu; \alpha) = \{x \in X \mid \mu(x) \ge \alpha\} = \mu^{-1}[\alpha, 1].$$

The collection of all level sets corresponding to the range $\mu(X)$ of μ is denoted by \mathscr{F}_{μ} and is given by

(2.12)
$$\mathscr{F}_{\mu} := \{ U(\mu; \alpha) \mid \alpha \in \mu(X) \}.$$

Throughout the paper, a partially ordered set, *poset*, (P, \leq) , is a nonempty set P endowed with a reflexive, anti-symmetric and transitive relation \leq . A poset is often denoted by the underlying set P only. If more than one poset is considered, we denote all (generally different) ordering relations by the same symbol \leq . If (P, \leq) and (Q, \leq) are two posets, then the map $f : P \to Q$ is said to be *isotone* if it preserves the order, i.e.,

(2.13)
$$(\forall p, q \in P) (p \le q \implies f(p) \le f(q)).$$

The map $f: P \to Q$ is said to be *anti-isotone* if

$$(2.14) \qquad (\forall p, q \in P)(p \le q \implies f(q) \le f(p))$$

 (P, \leq) and (Q, \leq) are said to be *isomorphic* if there is a bijection $f : P \to Q$ such that f and f^{-1} are isotone. If f is a bijection and f and f^{-1} are anti-isotone, then P and Q are said to be *anti-isomorphic*.

3. Fuzzy Filters

In what follows, let X denote a BE-algebra unless otherwise specified.

Definition 3.1. A fuzzy set μ in X is called a *fuzzy filter* of X if it satisfies:

$$(3.1) \qquad (\forall x \in X) \, (\mu(1) \ge \mu(x)),$$

$$(3.2) \qquad (\forall x, y \in X) \ (\mu(y) \ge \min\{\mu(x * y), \mu(x)\})$$

Theorem 3.2. Let μ be a fuzzy set in X. Then μ is a fuzzy filter of X if and only if it satisfies:

$$(3.3) \qquad (\forall \alpha \in [0,1])(U(\mu;\alpha) \neq \emptyset \Rightarrow U(\mu;\alpha) \text{ is a filter of } X).$$

We call $U(\mu; \alpha)$ a level filter.

Proof. Assume that μ is a fuzzy filter of X. Let $\alpha \in [0, 1]$ be such that $U(\mu; \alpha) \neq \emptyset$. Then there exists $a \in U(\mu; \alpha)$, and so $\mu(1) \ge \mu(a) \ge \alpha$ by (3.1). Hence $1 \in U(\mu; \alpha)$. Let $x, y \in X$ be such that $x * y \in U(\mu; \alpha)$ and $x \in U(\mu; \alpha)$. Then $\mu(x * y) \ge \alpha$ and $\mu(x) \ge \alpha$. It follows from (3.2) that

$$\mu(y) \ge \min\{\mu(x * y), \mu(y)\} \ge \alpha$$

so that $y \in U(\mu; \alpha)$. Therefore $U(\mu; \alpha)$ is a filter of X.

Conversely, suppose μ satisfies (3.3). If μ does not satisfy (3.1), then $\mu(1) < \mu(a)$ for some $a \in X$. It follows that there exist $\alpha_0 \in (0, 1)$ such that $\mu(1) < \alpha_0 \leq \mu(a)$ so that $a \in U(\mu; \alpha_0)$ and $1 \notin U(\mu; \alpha_0)$. Hence $U(\mu; \alpha_0)$ is a filter of X which does not contain 1. This is a contradiction. Therefore (3.1) is valid. Now suppose that there exist $a, b \in X$ such that $\mu(b) < \min\{\mu(a * b), \mu(a)\}$. Then $\mu(b) < \beta \leq$ $\min\{\mu(a * b), \mu(a)\}$ for some $\beta \in (0, 1)$, and so $a * b \in U(\mu; \beta)$ and $a \in U(\mu; \beta)$, but $b \notin U(\mu; \beta)$. This is a contradiction. Therefore (3.2) is true. Thus μ is a fuzzy filter of X. **Example 3.3.** Let $X = \{1, a, b, c, d, 0\}$ be a set with the following Cayley table:

*	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then (X; *, 1) is a *BE*-algebra (see [2]).

(1) Let μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} 0.7 & \text{if } x \in \{1, a, b\}, \\ 0.2 & \text{if } x \in \{c, d, 0\}. \end{cases}$$

Then

$$U(\mu; \alpha) = \begin{cases} \emptyset & \text{if } \alpha \in (0.7, 1], \\ \{1, a, b\} & \text{if } \alpha \in (0.2, 0.7], \\ X & \text{if } \alpha \in [0, 0.2]. \end{cases}$$

Note that $\{1, a, b\}$ and X are filters of X, and so μ is a fuzzy filter of X.

(2) Let ν be a fuzzy set in X defined by

$$\nu(x) := \begin{cases} 0.6 & \text{if } x \in \{1, a\}, \\ 0.4 & \text{if } x \in \{b, c, d, 0\} \end{cases}$$

Then

$$U(\nu;\beta) = \begin{cases} \emptyset & \text{if } \beta \in (0.6,1],\\ \{1,a\} & \text{if } \beta \in (0.4,0.6],\\ X & \text{if } \alpha \in [0,0.4]. \end{cases}$$

Note that $\{1, a\}$ is not a filter of X since $a * b \in \{1, a\}$ and $a \in \{1, a\}$, but $b \notin \{1, a\}$. Hence ν is not a fuzzy filter of X.

For any $a, b \in X$, the set

$$A(a,b) := \{ x \in X \mid a * (b * x) = 1 \}$$

is called the *upper set* of a and b (see [2]). Clearly, $1, a, b \in A(a, b)$ for all $a, b \in X$ (see [2]). Note that A(a, b) is not a filter of X in general (see [2]).

For every $a, b \in X$, let μ_a^b be a fuzzy set in X defined by

$$\mu_a^b(x) := \begin{cases} \alpha & \text{if } a * (b * x) = 1, \\ \beta & \text{otherwise} \end{cases}$$

for all $x \in X$ and $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$.

The following example shows that there exist $a, b \in X$ such that μ_a^b is not a fuzzy filter of X.

Example 3.4. Let $X = \{1, a, b, c, d, 0\}$ be a *BE*-algebra as in Example 3.3. Then μ_1^a is not a fuzzy filter of X since

$$U(\mu_1^a; \delta) = \begin{cases} \emptyset & \text{if } \delta \in (\alpha, 1], \\ \{1, a\} & \text{if } \delta \in (\beta, \alpha], \\ X & \text{if } \delta \in [0, \beta] \end{cases}$$

in which $\{1, a\}$ is not a filter of X.

We provide conditions for a fuzzy set μ_a^b in X to be a fuzzy filter of X.

Theorem 3.5. Let X be a BE-algebra. If $b \in X$ satisfies b * c = 1 for all $c \in X$, then μ_a^b and μ_b^a are fuzzy filters of X for all $a \in X$.

Proof. Note that a * (b * x) = b * (a * x) = 1 for all $a, x \in X$. Hence it is clear that μ_a^b and μ_b^a are fuzzy filters of X for all $a \in X$.

Theorem 3.6. If X is self distributive, then the fuzzy set μ_a^b in X is a fuzzy filter of X for all $a, b \in X$.

Proof. Since a * (b * 1) = 1 for all $a, b \in X$, we have $\mu_a^b(1) = \alpha \ge \mu_a^b(x)$ for all $x \in X$. Let $x, y \in X$. If $a * (b * (x * y)) \ne 1$ or $a * (b * x) \ne 1$, then $\mu_a^b(x * y) = \beta = \mu_a^b(x)$, and so

$$\mu_a^b(y) \ge \beta = \min\{\mu_a^b(x * y), \mu_a^b(x)\}.$$

Assume that a * (b * (x * y)) = 1 and a * (b * x) = 1. Then $\mu_a^b(x * y) = \alpha = \mu_a^b(x)$. Using (2.3) and the self distributivity of X, we get

$$\begin{aligned} a*(b*y) &= 1*(a*(b*y)) = (a*(b*x))*(a*(b*y)) \\ &= a*((b*x)*(b*y)) = a*(b*(x*y)) = 1. \end{aligned}$$

Hence $\mu_a^b(y) = \alpha = \min\{\mu_a^b(x * y), \mu_a^b(x)\}$, and therefore μ_a^b is a fuzzy filter of X for all $a, b \in X$.

We pose a question as follows:

Question. Does any fuzzy set μ of X satisfy the following assertion?

$$(3.4) \qquad (\forall a, b \in X)(\forall \alpha \in [0, 1])(U(\mu; \alpha) \neq \emptyset \Rightarrow A(a, b) \subseteq U(\mu; \alpha)).$$

The following example gives a negative answer to the above question.

Example 3.7. Consider $X = \{1, a, b, c, d, 0\}$ and ν as in Example 3.3(2). Since $\nu(b) = 0.4 < 0.6 = \nu(a) = \min\{\nu(a * b), \nu(a)\}, \nu$ is not a fuzzy filter of X. Put $\alpha := 0.6$. Then $A(a, b) = \{1, a, b\}$ and $U(\nu; 0.6) = \{1, a\}$. But $A(a, b) \notin U(\nu; 0.6)$.

Theorem 3.8. Let μ be a fuzzy set in X. Then μ is a fuzzy filter of X if and only if it satisfies the following assertion:

$$(3.5) \qquad (\forall a, b \in X) \, (\forall \alpha \in [0, 1]) (a, b \in U(\mu; \alpha) \Rightarrow A(a, b) \subseteq U(\mu; \alpha)).$$

Proof. Assume that μ is a fuzzy filter of X and let $a, b \in U(\mu; \alpha)$. Then $\mu(a) \ge \alpha$ and $\mu(b) \ge \alpha$. Let $x \in A(a, b)$. Then a * (b * x) = 1. Hence

$$\mu(x) \geq \min\{\mu(b * x), \mu(b)\} \\ \geq \min\{\min\{\mu(a * (b * x)), \mu(a)\}, \mu(b)\} \\ = \min\{\mu(1), \mu(a), \mu(b)\} \\ = \min\{\mu(a), \mu(b)\} \geq \alpha.$$

Thus $x \in U(\mu; \alpha)$, and so $A(a, b) \subseteq U(\mu; \alpha)$.

Conversely, suppose μ satisfies (3.5). Note that $1 \in A(a,b) \subseteq U(\mu;\alpha)$ for all $a, b \in X$ and $\alpha \in [0,1]$. Let $x, y \in X$ be such that $x * y \in U(\mu;\alpha)$ and $x \in U(\mu;\alpha)$. Since (x * y) * (x * y) = 1, we have

$$y \in A(x * y, x) \subseteq U(\mu; \alpha).$$

Hence $U(\mu; \alpha)$ is a filter of X, and so μ is a fuzzy filter of X by Theorem 3.2. \Box

Corollary 3.9. Let μ be a fuzzy set in X such that

$$(3.6) \qquad (\forall a, b \in X) \ (\forall \alpha \in [0, 1]) (A(a, b) \subseteq U(\mu; \alpha)).$$

Then μ is a fuzzy filter of X.

Proof. Since $a, b \in A(a, b) \subseteq U(\mu; \alpha)$ for all $a, b \in X$, it follows from Theorem 3.8.

Theorem 3.10. If μ is a fuzzy filter of X, then

(3.7)
$$(\forall \alpha \in [0,1]) \left(U(\mu; \alpha) \neq \emptyset \Rightarrow U(\mu; \alpha) = \bigcup_{a,b \in U(\mu;\alpha)} A(a,b) \right)$$

Proof. Let $\alpha \in [0,1]$ be such that $U(\mu;\alpha) \neq \emptyset$. Since $1 \in U(\mu;\alpha)$, we have

$$U(\mu;\alpha) \subseteq \bigcup_{a \in U(\mu;\alpha)} A(a,1) \subseteq \bigcup_{a,b \in U(\mu;\alpha)} A(a,b)$$

Now, let $x \in \bigcup_{a,b \in U(\mu;\alpha)} A(a,b)$. Then there exist $u, v \in U(\mu;\alpha)$ such that $x \in A(u,v) \subseteq U(\mu;\alpha)$ by Theorem 3.8. Thus $\bigcup_{a,b \in U(\mu;\alpha)} A(a,b) \subseteq U(\mu;\alpha)$. This completes the proof.

Corollary 3.11. If μ is a fuzzy filter of X, then

(3.8)
$$(\forall \alpha \in [0,1]) \left(U(\mu;\alpha) \neq \emptyset \Rightarrow U(\mu;\alpha) = \bigcup_{a \in U(\mu;\alpha)} A(a,1) \right).$$

Proof. Straightforward.

The collection of level filters corresponding to the range $\mu(X)$ of the fuzzy filter μ is denoted by \mathscr{F}_{μ} .

We have the following question:

Question. Let Λ be a subset of [0, 1] containing a maximal element m > 0 and let $\mathscr{F} := \{F_{\alpha} \mid \alpha \in \Lambda\}$ be a decreasing chain of filters of a *BE*-algebra *X*. Then does there exist a fuzzy filter μ of *X* such that $\mu(X) = \Lambda$ and $\mathscr{F}_{\mu} = \mathscr{F}$?

We will give an answer to the above question.

Denote by FF(X) the set of all fuzzy filters of X, that is,

(3.9)
$$FF(X) := \{ \text{Fuzzy filters of } X \}.$$

Note that the collection \mathscr{F}_{μ} is a chain of filters in the sense that it is totally ordered by inclusion.

Example 3.12. Let $X = \{1, a, b, c, d\}$ be a set with the following Cayley table:

*	1	a	b	c	d
1	1	a	b	c	d
a	1	1	a	c	c
b	1	1	1	c	c
c	1	a	b	1	a
d	1	1	a	1	1

Then (X; *, 1) is a *BE*-algebra. Let μ be a fuzzy set in X given by

	1	a	b	c	d
μ	0.8	0.6	0.4	0.2	0.2

Then $\mu \in FF(X)$, $\mu(X) = \{0.8, 0.6, 0.4, 0.2\}$ and

$$\mathscr{F}_{\mu} = \{ U(\mu; 0.8), U(\mu; 0.6), U(\mu; 0.4), U(\mu; 0.2) \},\$$

which is a chain because $U(\mu; 0.8) \subseteq U(\mu; 0.6) \subseteq U(\mu; 0.4) \subseteq U(\mu; 0.2)$.

Theorem 3.13. If $\mu \in FF(X)$, then $(\mathscr{F}_{\mu}, \subseteq)$ and $(\mu(X), \leq)$ are anti-isomorphic.

Proof. Let $f : \mu(X) \to \mathscr{F}_{\mu}$ be defined by $f(\alpha) = U(\mu; \alpha)$ for all $\alpha \in \mu(X)$. Obviously, f is a bijection, and f and f^{-1} are anti-isotone. Hence $(\mathscr{F}_{\mu}, \subseteq)$ and $(\mu(X), \leq)$ are anti-isomorphic.

Let $\mu \in FF(X)$. Since $\mu(1) \ge \mu(x)$ for all $x \in X$, we have

(3.10)
$$\bigcap_{\alpha \in \mu(X)} U(\mu; \alpha) = U(\mu; \mu(1)) \in \mathscr{F}_{\mu}.$$

Note that $X \in \mathscr{F}_{\mu}$ if and only if $\inf(\mu(X)) \in \mu(X)$, in this case we obtain

(3.11)
$$X = \bigcup_{\alpha \in \mu(X)} U(\mu; \alpha) = U(\mu; \inf(\mu(X))) \in \mathscr{F}_{\mu}.$$

Lemma 3.14. For any $\mu \in FF(X)$ and $\alpha \in \mu(X)$, we have

(3.12)
$$\bigcup_{\beta \in (\alpha,1] \cap \mu(X)} U(\mu;\beta) \subsetneq U(\mu;\alpha).$$

Proof. Clearly, we have

(3.13)
$$\bigcup_{\beta \in (\alpha, 1] \cap \mu(X)} U(\mu; \beta) \subseteq U(\mu; \alpha).$$

Since $\alpha \in \mu(X)$ and $U(\mu; \alpha) = \mu^{-1}[\alpha, 1]$, there exists $x \in U(\mu; \alpha)$ such that $\mu(x) = \alpha$. If $\beta \in (\alpha, 1]$, then obviously $x \notin U(\mu; \beta) = \mu^{-1}[\beta, 1]$. Hence (3.12) is valid. \Box

The following example shows that there exist a BE-algebra with a decreasing chain of filters (indexed by subsets of [0, 1]) not satisfying the equality in (3.12).

Example 3.15. Consider $X = \{1, a, b, c, d\}$ and μ as in Example 3.12. Put $\alpha := 0.4$. Since $\beta \in (0.4, 1] \cap \mu(X)$, we have $\beta \in \{0.6, 0.8\}$. Hence $\bigcup_{\substack{\beta \in (0.4, 1] \cap \mu(X) \\ \beta \in (0.4, 1] \cap \mu(X)}} U(\mu; \beta) = \{1, a, b\}$. Therefore $\bigcup_{\beta \in (0.4, 1] \cap \mu(X)} U(\mu; \beta) \subsetneq U(\mu; 0.4)$.

Lemma 3.16. Let Λ be a subset of [0,1] containing a maximal element m > 0 and let $\mathscr{F} := \{F_{\alpha} \mid \alpha \in \Lambda\}$ be a decreasing chain of filters of X. For any $\mu \in FF(X)$ such that $\mu(X) = \Lambda$ and $\mathscr{F}_{\mu} = \mathscr{F}$, we have

(3.14)
$$\bigcup_{\gamma \in (\alpha, 1] \cap \Lambda} U(\mu; \gamma) = \bigcup_{\gamma \in (\beta, 1] \cap \Lambda} F_{\gamma}$$

whenever $U(\mu; \alpha) = F_{\beta}$ for some $\alpha, \beta \in \Lambda$, and

(3.15)
$$\{\mu^{-1}(\alpha) \mid \alpha \in \Lambda\} = \left\{ F_{\delta} \setminus \bigcup_{\gamma \in (\delta, 1] \cap \Lambda} F_{\gamma} \mid \delta \in \Lambda \right\}.$$

Proof. Assume that $U(\mu; \alpha) = F_{\beta}$ for some $\alpha, \beta \in \Lambda$. Note that $\mathscr{F}_{\mu} = \mathscr{F}$ and they are decreasing chains, and so we must have $U(\mu; m) = F_m$. Since $U(\mu; \alpha) = F_{\beta}$ for some $\alpha, \beta \in \Lambda$, it follows that either $\alpha = \beta = m$ or $\alpha, \beta < m$. If $\alpha = \beta = m$, then

$$\{U(\mu;\gamma) \mid \gamma \in (\alpha,1] \cap \Lambda\} = \emptyset = \{F_{\gamma} \mid \gamma \in (\beta,1] \cap \Lambda\}$$

and thus (3.14) is valid. Now we assume that $U(\mu; \alpha) = F_{\beta}$ for some $\alpha, \beta \in \Lambda \setminus \{m\}$. Then

$$\{ U(\mu;\gamma) \mid \gamma \in (\alpha,1] \cap \Lambda \} = \{ U(\mu;\gamma) \mid \gamma \in \Lambda, U(\mu;\gamma) \subsetneq U(\mu;\alpha) \}$$

=
$$\{ F_{\gamma} \mid \gamma \in \Lambda, F_{\gamma} \subsetneq F_{\beta} \}$$

=
$$\{ F_{\gamma} \mid \gamma \in (\beta,1] \cap \Lambda \},$$

which induces (3.14). Since $\mathscr{F}_{\mu} = \mathscr{F}$, for every $\alpha \in \Lambda$ there exists $\delta \in \Lambda$ such that $U(\mu; \alpha) = F_{\delta}$. It follows from (3.14) that

$$\bigcup_{\gamma \in (\alpha, 1] \cap \Lambda} U(\mu; \gamma) = \bigcup_{\gamma \in (\delta, 1] \cap \Lambda} F_{\gamma}$$

so that

$$\mu^{-1}(\alpha) = U(\mu; \alpha) \setminus \bigcup_{\gamma \in (\alpha, 1] \cap \Lambda} U(\mu; \gamma) = F_{\delta} \setminus \bigcup_{\gamma \in (\delta, 1] \cap \Lambda} F_{\gamma}$$

Hence

(3.16)
$$\{\mu^{-1}(\alpha) \mid \alpha \in \Lambda\} \subseteq \left\{ F_{\delta} \setminus \bigcup_{\gamma \in (\delta, 1] \cap \Lambda} F_{\gamma} \mid \delta \in S \right\}.$$

Similarly we prove that for every $\delta \in \Lambda$, there exists $\alpha \in \Lambda$ such that

$$F_{\delta} \setminus \bigcup_{\gamma \in (\delta, 1] \cap \Lambda} F_{\gamma} = \mu^{-1}(\alpha)$$

Hence

(3.17)
$$\left\{F_{\delta} \setminus \bigcup_{\gamma \in (\delta, 1] \cap \Lambda} F_{\gamma} \mid \delta \in \Lambda\right\} \subseteq \{\mu^{-1}(\alpha) \mid \alpha \in \Lambda\}.$$

Combining (3.16) and (3.17) induces (3.15).

4. Conclusions

We have introduced the notion of a fuzzy filter in a BE-algebra, and have discussed its characterization. We have answered to the following question:

Question. Let Λ be a subset of [0, 1] containing a maximal element m > 0 and let $\mathscr{F} := \{F_{\alpha} \mid \alpha \in \Lambda\}$ be a decreasing chain of filters of a *BE*-algebra *X*. Then does there exist a fuzzy filter μ of *X* such that $\mu(X) = \Lambda$ and $\mathscr{F}_{\mu} = \mathscr{F}$?

Based on the idea and results in this article, we will consider the following theorem:

Theorem 4.1. Let S be a subset of [0,1] containing a maximal element m > 0 and let $\mathscr{F} := \{F_t \mid t \in S\}$ be a decreasing chain of filters of X. Then there exists a fuzzy filter μ of X satisfying $\mu(X) = S$ and $\mathscr{F}_{\mu} = \mathscr{F}$ if and only if the following conditions hold:

(1) For every $t \in S$,

(4.1)
$$\bigcup_{r \in (t,1] \cap S} F_r \subsetneq F_t.$$

(2) The BE-algebra X is the disjoint union

(4.2)
$$X = \bigcup_{t \in S} \left(F_t \setminus \bigcup_{r \in (t,1] \cap S} F_r \right).$$

5. Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

- S.S. Ahn & K.S. So: On ideals and upper sets in *BE*-algerbas, *Sci. Math. Jpn.* 68 (2008), 279-285.
- 2. H.S. Kim & Y.H. Kim: On BE-algerbas. Sci. Math. Jpn. 66 (2007), 113-116.
- 3. A. Walendziak: On commutative BE-algerbas. Sci. Math. Jpn. 69 (2007), 281-284.

^aDEPARTMENT OF MATHEMATICS EDUCATION (AND RINS), GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA Email address: skywine@gmail.com

Entan dauress. Skywineegmail.com

^bDepartment of Mathematics Education, Dongguk University, Seoul 100-715, Korea *Email address*: sunshine@dongguk.edu

^cDEPARTMENT OF MATHEMATICS EDUCATION, HANNAM UNIVERSITY, DAEJEON 306-791, KOREA *Email address*: lsj1109@hotmail.com

10