DOI QR코드

DOI QR Code

Engraftment of Human Mesenchymal Stem Cells in a Rat Photothrombotic Cerebral Infarction Model : Comparison of Intra-Arterial and Intravenous Infusion Using MRI and Histological Analysis

  • Byun, Jun Soo (Department of Radiology, Chung-Ang University College of Medicine) ;
  • Kwak, Byung Kook (Department of Radiology, Chung-Ang University College of Medicine) ;
  • Kim, Jae Kyun (Department of Radiology, Chung-Ang University College of Medicine) ;
  • Jung, Jisung (Department of Radiology, Chung-Ang University College of Medicine) ;
  • Ha, Bon Chul (Department of Radiology, Chung-Ang University College of Medicine) ;
  • Park, Serah (Department of Radiology, Chung-Ang University College of Medicine)
  • Received : 2013.02.22
  • Accepted : 2013.12.12
  • Published : 2013.12.28

Abstract

Objective : This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. Methods : Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), $T2^*$ weighted image ($T2^*WI$), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. Results : Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by $T2^*WI$ and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. Conclusion : In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain.

Keywords

References

  1. Abdallah BM, Haack-Sorensen M, Burns JS, Elsnab B, Jakob F, Hokland P, et al. : Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem Biophys Res Commun 326 : 527-538, 2005 https://doi.org/10.1016/j.bbrc.2004.11.059
  2. Akter M, Hirai T, Hiai Y, Kitajima M, Komi M, Murakami R, et al. : Detection of hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging clinical and phantom studies. Acad Radiol 14 : 1011-1019, 2007 https://doi.org/10.1016/j.acra.2007.05.013
  3. Andres RH, Choi R, Pendharkar AV, Gaeta X, Wang N, Nathan JK, et al. : The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42 : 2923-2931, 2011 https://doi.org/10.1161/STROKEAHA.110.606368
  4. Andres RH, Choi R, Steinberg GK, Guzman R : Potential of adult neural stem cells in stroke therapy. Regen Med 3 : 893-905, 2008 https://doi.org/10.2217/17460751.3.6.893
  5. Arai T, Kofidis T, Bulte JW, de Bruin J, Venook RD, Berry GJ, et al. : Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magn Reson Med 55 : 203-209, 2006 https://doi.org/10.1002/mrm.20702
  6. Bang OY, Lee JS, Lee PH, Lee G : Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57 : 874-882, 2005 https://doi.org/10.1002/ana.20501
  7. Barry FP, Murphy JM : Mesenchymal stem cells : clinical applications and biological characterization. Int J Biochem Cell Biol 36 : 568-584, 2004 https://doi.org/10.1016/j.biocel.2003.11.001
  8. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al. : Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 1010 : 108-116, 2004 https://doi.org/10.1016/j.brainres.2004.02.072
  9. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al. : Intracerebral xenografts of mouse bone marrow cells in adult rats facilitate restoration of cerebral blood flow and blood-brain barrier. Brain Res 1009 : 26-33, 2004 https://doi.org/10.1016/j.brainres.2004.02.050
  10. Brazelton TR, Rossi FM, Keshet GI, Blau HM : From marrow to brain : expression of neuronal phenotypes in adult mice. Science 290 : 1775-1779, 2000 https://doi.org/10.1126/science.290.5497.1775
  11. Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW : Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke 27 : 1105-1109; discussion 1109-1111, 1996 https://doi.org/10.1161/01.STR.27.6.1105
  12. Bulte JW, Kraitchman DL : Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5 : 567-584, 2004 https://doi.org/10.2174/1389201043376526
  13. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. : Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73 : 778-786, 2003 https://doi.org/10.1002/jnr.10691
  14. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M : Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189 : 49-57, 2001 https://doi.org/10.1016/S0022-510X(01)00557-3
  15. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al. : Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92 : 692-699, 2003 https://doi.org/10.1161/01.RES.0000063425.51108.8D
  16. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, et al. : Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22 : 275-279, 2002 https://doi.org/10.1046/j.1440-1789.2002.00450.x
  17. Chopp M, Li Y : Treatment of neural injury with marrow stromal cells. Lancet Neurol 1 : 92-100, 2002 https://doi.org/10.1016/S1474-4422(02)00040-6
  18. Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, et al. : Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016 : 145-153, 2004 https://doi.org/10.1016/j.brainres.2004.04.038
  19. Clark WM, Lessov NS, Dixon MP, Eckenstein F : Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol Res 19 : 641-648, 1997 https://doi.org/10.1080/01616412.1997.11740874
  20. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, et al. : Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells 25 : 2777-2785, 2007 https://doi.org/10.1634/stemcells.2007-0169
  21. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. : Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113 : 1701-1710, 2004 https://doi.org/10.1172/JCI200420935
  22. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. : Pulmonary passage is a major obstacle for intravenous stem cell delivery : the pulmonary first-pass effect. Stem Cells Dev 18 : 683-692, 2009 https://doi.org/10.1089/scd.2008.0253
  23. Friedenstein AJ, Chailakhjan RK, Lalykina KS : The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3 : 393-403, 1970
  24. Frijns CJ, Kappelle LJ : Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 33 : 2115-2122, 2002 https://doi.org/10.1161/01.STR.0000021902.33129.69
  25. Garot J, Unterseeh T, Teiger E, Champagne S, Chazaud B, Gherardi R, et al. : Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J Am Coll Cardiol 41 : 1841-1846, 2003 https://doi.org/10.1016/S0735-1097(03)00414-5
  26. Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK : Intravascular cell replacement therapy for stroke. Neurosurg Focus 24 : E15, 2008
  27. Guzman R, De Los Angeles A, Cheshier S, Choi R, Hoang S, Liauw J, et al. : Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 39 : 1300-1306, 2008 https://doi.org/10.1161/STROKEAHA.107.500470
  28. Haacke EM, Xu Y, Cheng YC, Reichenbach JR : Susceptibility weighted imaging (SWI). Magn Reson Med 52 : 612-618, 2004 https://doi.org/10.1002/mrm.20198
  29. Hicks A, Jolkkonen J : Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp (Wars) 69 : 1-11, 2009
  30. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, et al. : Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108 : 1009-1014, 2003 https://doi.org/10.1161/01.CIR.0000084537.66419.7A
  31. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. : Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134 (Pt 6) : 1790-1807, 2011 https://doi.org/10.1093/brain/awr063
  32. Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A, et al. : Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis 18 : 366-374, 2005 https://doi.org/10.1016/j.nbd.2004.10.010
  33. Kassem M : Mesenchymal stem cells : biological characteristics and potential clinical applications. Cloning Stem Cells 6 : 369-374, 2004 https://doi.org/10.1089/clo.2004.6.369
  34. Kitagawa K, Matsumoto M, Yang G, Mabuchi T, Yagita Y, Hori M, et al. : Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice : evaluation of the patency of the posterior communicating artery. J Cereb Blood Flow Metab 18 : 570-579, 1998 https://doi.org/10.1097/00004647-199805000-00012
  35. Lee JK, Park MS, Kim YS, Moon KS, Joo SP, Kim TS, et al. : Photochemically induced cerebral ischemia in a mouse model. Surg Neurol 67 : 620-625; discussion 625, 2007 https://doi.org/10.1016/j.surneu.2006.08.077
  36. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY; STARTING collaborators : A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28 : 1099-1106, 2010 https://doi.org/10.1002/stem.430
  37. Leor J, Rozen L, Zuloff-Shani A, Feinberg MS, Amsalem Y, Barbash IM, et al. : Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 114 (1 Suppl) :I94-I100, 2006
  38. Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, et al. : Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cereb Blood Flow Metab 30 : 653-662, 2010 https://doi.org/10.1038/jcbfm.2009.238
  39. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, et al. : Human marrow stromal cell therapy for stroke in rat : neurotrophins and functional recovery. Neurology 59 : 514-523, 2002 https://doi.org/10.1212/WNL.59.4.514
  40. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, et al. : Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49 : 407-417, 2005 https://doi.org/10.1002/glia.20126
  41. Liu W, Jiang X, Fu X, Cui S, Du M, Cai Y, et al. : Bone marrow stromal cells can be delivered to the site of traumatic brain injury via intrathecal transplantation in rabbits. Neurosci Lett 434 : 160-164, 2008 https://doi.org/10.1016/j.neulet.2007.12.067
  42. Lundberg J, Le Blanc K, Söderman M, Andersson T, Holmin S : Endovascular transplantation of stem cells to the injured rat CNS. Neuroradiology 51 : 661-667, 2009 https://doi.org/10.1007/s00234-009-0551-6
  43. Luria EA, Panasyuk AF, Friedenstein AY : Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 11 : 345-349, 1971 https://doi.org/10.1111/j.1537-2995.1971.tb04426.x
  44. Magnitsky S, Watson DJ, Walton RM, Pickup S, Bulte JW, Wolfe JH, et al. : In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage 26 : 744-754, 2005 https://doi.org/10.1016/j.neuroimage.2005.02.029
  45. McAuley MA : Rodent models of focal ischemia. Cerebrovasc Brain Metab Rev 7 : 153-180, 1995
  46. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR : Turning blood into brain : cells bearing neuronal antigens generated in vivo from bone marrow. Sience 290 : 1779-1782, 2000 https://doi.org/10.1126/science.290.5497.1779
  47. Parr AM, Tator CH, Keating A : Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40 : 609-619, 2007 https://doi.org/10.1038/sj.bmt.1705757
  48. Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H, et al. : Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke 41 : 2064-2070, 2010 https://doi.org/10.1161/STROKEAHA.109.575993
  49. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, et al. : Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436 : 266-271, 2005 https://doi.org/10.1038/nature03889
  50. Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM : Chemokines, mononuclear cells and the nervous system : heaven (or hell) is in the details. Curr Opin Immunol 18 : 683-689, 2006 https://doi.org/10.1016/j.coi.2006.09.005
  51. Reddy AM, Kwak BK, Shim HJ, Ahn C, Cho SH, Kim BJ, et al. : Functional characterization of mesenchymal stem cells labeled with a novel PVP-coated superparamagnetic iron oxide. Contrast Media Mol Imaging 4 : 118-126, 2009 https://doi.org/10.1002/cmmi.271
  52. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM : Small vessels in the human brain : MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204 : 272-277, 1997 https://doi.org/10.1148/radiology.204.1.9205259
  53. Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, et al. : Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22 : 439-450, 2005 https://doi.org/10.1002/jmri.20404
  54. Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ, et al. : Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24 : 41-51, 2006 https://doi.org/10.1002/jmri.20598
  55. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, et al. : Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27 : 6-13, 2007 https://doi.org/10.1038/sj.jcbfm.9600311
  56. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, et al. : Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137 : 393-399, 2006 https://doi.org/10.1016/j.neuroscience.2005.08.092
  57. Shichinohe H, Kuroda S, Yano S, Ohnishi T, Tamagami H, Hida K, et al. : Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells : an autoradiographic and histologic analysis. J Nucl Med 47 : 486-491, 2006
  58. Tran PB, Ren D, Veldhouse TJ, Miller RJ : Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76 : 20-34, 2004 https://doi.org/10.1002/jnr.20001
  59. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al. : Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39 : 1569-1574, 2008 https://doi.org/10.1161/STROKEAHA.107.502047
  60. Wang Q, Tang XN, Yenari MA : The inflammatory response in stroke. J Neuroimmunol 184 : 53-68, 2007 https://doi.org/10.1016/j.jneuroim.2006.11.014
  61. Wang Y, Deng Y, Zhou GQ : SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195 : 104-112, 2008 https://doi.org/10.1016/j.brainres.2007.11.068
  62. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD : Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17 : 497-504, 1985 https://doi.org/10.1002/ana.410170513
  63. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B : Plasticity of cultured mesenchymal stem cells : switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23 : 392-402, 2005 https://doi.org/10.1634/stemcells.2004-0149
  64. Witte OW, Stoll G : Delayed and remote effects of focal cortical infarctions : secondary damage and reactive plasticity. Adv Neurol 73 : 207-227, 1997
  65. Woodbury D, Schwarz EJ, Prockop DJ, Black IB : Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61 : 364-370, 2000 https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  66. Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L : Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant 19 : 1073-1084, 2010 https://doi.org/10.3727/096368910X503415
  67. Zhu J, Zhou Z, Liu Y, Zheng J : Fractalkine and CX3CR1 are involved in the migration of intravenously grafted human bone marrow stromal cells toward ischemic brain lesion in rats. Brain Res 1287 : 173-183, 2009 https://doi.org/10.1016/j.brainres.2009.06.068

Cited by

  1. Intra-Arterial Transplantation of Low-Dose Stem Cells Provides Functional Recovery Without Adverse Effects After Stroke vol.35, pp.3, 2015, https://doi.org/10.1007/s10571-014-0135-9
  2. Stem Cell Transplantation Enhances Endogenous Brain Repair after Experimental Stroke vol.55, pp.2, 2013, https://doi.org/10.2176/nmc.ra.2014-0271
  3. Sensitivity of Susceptibility-Weighted Imaging in Detecting Superparamagnetic Iron Oxide-Labeled Mesenchymal Stem Cells: A Comparative Study vol.12, pp.2, 2015, https://doi.org/10.5812/iranjradiol.20782
  4. Evaluation of Engraftment of Superparamagnetic Iron Oxide-Labeled Mesenchymal Stem Cells Using Three-Dimensional Reconstruction of Magnetic Resonance Imaging in Photothrombotic Cerebral Infarction Mod vol.16, pp.3, 2015, https://doi.org/10.3348/kjr.2015.16.3.575
  5. Intravenous Injection of Clinical Grade Human MSCs after Experimental Stroke: Functional Benefit and Microvascular Effect vol.25, pp.12, 2013, https://doi.org/10.3727/096368916x691132
  6. Methodological aspects of MRI of transplanted superparamagnetic iron oxide-labeled mesenchymal stem cells in live rat brain vol.12, pp.10, 2017, https://doi.org/10.1371/journal.pone.0186717
  7. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia vol.7, pp.None, 2013, https://doi.org/10.1038/srep40758
  8. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.01645
  9. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects vol.269, pp.None, 2013, https://doi.org/10.1016/j.biomaterials.2020.120214
  10. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain vol.39, pp.None, 2013, https://doi.org/10.1016/j.nano.2021.102464