DOI QR코드

DOI QR Code

혼합 실크 피브로인막의 투명도

Transparency of various silk fibroin membranes

  • 조유영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 여주홍 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이광길 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Yeo, Joo-Hong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 투고 : 2013.09.28
  • 심사 : 2013.10.29
  • 발행 : 2013.11.30

초록

실크는 천연고분자 단백질로 생체친화적이며, 최근 조직공학 연구가 활성화 되면서 각광받는 생체재료이다. 하지만 실크 단독으로 실크막을 제작하였을 때, 얇은 막은 투명도가 있지만 두께가 두꺼워지게 되면 실크막은 매우 불투명한 막으로 바뀌게 된다. 인체조직에서 사용되는 막중 각막이나 뇌경막 등 투명도가 반드시 필요한 생체막에 실크막을 이용하기 위해서는 실크막의 투명도가 반드시 요구된다. 따라서, 본 연구에서는 실크 피브로인 수용액에 다양한 무기염류와 고분자물질을 혼합하여 혼합 실크막을 제작하고 그 투명도를 분석하였다. 제작된 혼합 실크막은 혼합된 물질에 따라 투명도가 매우 달랐다. 무기 염류가 혼합된 실크막의 경우 고분자물질과 혼합된 실크막에 비해 더 투명도가 높았으며, 특히 염화칼슘이 혼합된 실크막의 투명도는 매우 투명하였다. 따라서, 각막 등 완벽한 투명도를 요구하는 생체막으로 실크막을 사용할 수 있는 가능성을 확인할 수 있었다. 향후 혼합 실크막의 물리적 특성 규명을 통해 좀 더 물성이 개선된다면, 투명한 실크막이 다양한 용도로 이용될 수 있을 것으로 기대된다.

Silk fibroin is a natural biomaterial that has the biocompatibility and other many advantages. But as a silk fibroin membrane thickness increases, the transparency becomes more opaque. Because the transparency of membranes tissue such as the cornea and dura mater are necessary, transparent membrane is required to replace these transparent membranes. In this study, we fabricated blending silk fibroin membranes that made by mixing the various inorganic salts or polymer in an aqueous solution of silk fibroin. The transparency of the membranes were analyzed. the transparency of these membranes is very different, depending on the mixed materials. Inorganic salts mixed silk membrane was more transparent than the polymer mixed one. Especially, the silk fibroin membrane with calcium chloride was very transparent. We showed the possibility of blending silk fibroin membrane, which can be used in perfect transparent membrane such as the cornea. In the future, we expect that the transparent blending silk fibroin membrane can be used in various medical applications.

키워드

참고문헌

  1. Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater 11, 123-131. https://doi.org/10.1016/j.jmbbm.2011.11.007
  2. Gomez P, Gil ES, Lovett ML, Rockwood DN, Vizio DD, Kaplan DL, Adam RM, Estrada CR, Mauney JR (2011) The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation. Biomaterials 32, 7562-7570. https://doi.org/10.1016/j.biomaterials.2011.06.067
  3. Huang W, Begum R, Barber T, Ibba V, Tee NCH, Hussain M, Arastoo M, Yang Q, Robson LG, Lesage S, Cheysens T, Skaer NJV, Knight DP, Priestley JV (2012) Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 33, 59-71. https://doi.org/10.1016/j.biomaterials.2011.09.030
  4. Jo YY, Kweon HY, Lee KG, Lee HS (2012) A study of changes on the physical properties of silk fibroin biological membrane according to the dissolving conditions. J Seric Entomol Sci 50, 71-75.
  5. Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: Silk patch vs. pater patch. Wound Repair and Regeneration 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  6. Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, Kim TI, Park YJ, Seol YJ, Lee YM, Ku Y, Rhyu IC, Han SB, Chung CP (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. Journal of Biotechnology 120, 327-339. https://doi.org/10.1016/j.jbiotec.2005.06.033
  7. Kim KH, Kim MH, Lim YH, Park SR, Choi BY, Park HC, Yoon SH, Min BH, Park HS (2009) A comparative biocompatibility study of chondrocyte-drived ECM and silk fibroin scaffolds in vitro and in rat acute traumatic brain injury. Tissue Engineering and Regenerative Medicine 6, 1420-1428.
  8. Kim UJ, Park J, Kim HJ, Wada M, and Kaplan DL (2005) Three-demensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044
  9. Lv Q, Cao C, Zhang Y, Man X, Zhu H (2004) The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres. J Mater Sci Mater Med 15, 1193-1197. https://doi.org/10.1007/s10856-004-5918-y
  10. Mandal BB, Park SH, Gil ES, Kaplan DL (2011) Multilayered silk scaffold for meniscus tissue engineering. Biomaterials 32, 639-651. https://doi.org/10.1016/j.biomaterials.2010.08.115
  11. Masahiro K, Naohide T, Yasuhiro S, Koji Y, Yasushi T, Naoyoshi K, Toru S (2011) Chondrocyte distribution and cartilage regeneration in silk fibroin sponge. Bio-Medical Materials and Engineering 21, 53-61.
  12. Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Novakovic GV, Kaplan D (2005) Silk implants for the healing ofcritical size bone defects. Bone 37, 688-698. https://doi.org/10.1016/j.bone.2005.06.010
  13. Patra C, Talukdar S, Novoyatleva T, Velagala SR, Muhlfeld C, Kundu B, Kundu SC, Engel FB (2012) Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33, 2673-2680. https://doi.org/10.1016/j.biomaterials.2011.12.036
  14. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54, 139-148. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  15. Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schafer F, Allmeling C, Kasper C, Vogt PM (2011) Artificial skin-culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLOS ONE 6, 1-10.