DOI QR코드

DOI QR Code

Reeling of recombinant flourescence cocoons through low temperature decompressed cooking

저온감압 자견법에 의한 재조합 형광누에고치의 조사

  • Park, Jong-Hwa (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Sung-Wan (National Academy of Agricultural Science, RDA) ;
  • Jeong, Young-Hun (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Lee, Jong-Kil (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Go, Young-Mi (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Lee, Sang-Chan (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Choi, Kwang-Ho (National Academy of Agricultural Science, RDA) ;
  • Kim, Seong-Ryul (National Academy of Agricultural Science, RDA) ;
  • Goo, Tae-Won (National Academy of Agricultural Science, RDA)
  • 박종화 (충청북도농업기술원 잠사시험장) ;
  • 김성완 (농촌진흥청 국립농업과학원) ;
  • 정영훈 (충청북도농업기술원 잠사시험장) ;
  • 이종길 (충청북도농업기술원 잠사시험장) ;
  • 고영미 (충청북도농업기술원 잠사시험장) ;
  • 이상찬 (충청북도농업기술원 잠사시험장) ;
  • 최광호 (농촌진흥청 국립농업과학원) ;
  • 김성렬 (농촌진흥청 국립농업과학원) ;
  • 구태원 (농촌진흥청 국립농업과학원)
  • Received : 2013.09.05
  • Accepted : 2013.10.05
  • Published : 2013.11.30

Abstract

The fluorescent proteins are generally denatured by heat treatment and thus lose their color. The normal reeling method includes processing by drying and cooking the cocoons near $100^{\circ}C$ before reeling. Therefore, the usual processing method cannot be used for making colored fluorescent silks. To develop a method that is applicable to producing transgenic silk without color loss, we develop reeling methods adequate for a recombinant fluorescence cocoons. It was found that the fluorescence cocoons keep their native color when dried at temperatures lower than $60^{\circ}C$ for 15 h. Also, a new cooking method to soften the fluorescent cocoons was developed: the cocoons were soaked in a solution of 0.2% sodium carbonate ($Na_2CO_3$)/0.1% nonionic surfactant (Triton X100) at $60^{\circ}C$ and then placed under vacuum. The repeated vacuum treatments enabled complete penetration of the solution into the cocoons, and the cocoons were thus homogenously softened and ready for reeling. In this state, the cooked cocoons can be reeled by an automated reeling machine. Our results suggest that drying and cooking of the cocoons at low temperature enables the subsequent reeling of the colored fluorescent silks by an automatic reeling machine without color loss and can produce silks that can be used for making higher value-added silk materials.

최근 국내 농촌진흥청 국립농업과학원 연구팀에서 농가보급품종인 백옥잠(잠123 ${\times}$ 잠124)을 이용하여 피브로인 중쇄 유전자 내에 녹색형광유전자(EGFP)를 도입하여 녹색형광 누에고치를 생산하는 형질전환누에 개발에 성공한 바 있다. 그리고 녹색형광 누에고치는 견사의 주성분인 fibroin heavy chain 유전자에 삽입된 형광유전자의 발현으로 정련을 해도 형광단백질의 고유한 색깔이 그대로 유지되며, 자연광 하에서도 도입 형광유전자 고유의 형광색을 나타낸다. 그러나 형광누에고치는 기존의 $100^{\circ}C$ 내외의 고온 처리에 의한 건조, 자견 및 조사 방법을 이용하면 형광단백질에 심각한 변성이 초래되고 이로 인해 형광색깔을 잃게 되는 단점을 가지고 있다. 따라서 본 연구에서는 녹색형광 누에고치로부터 녹색형광단백질의 변성을 초래하지 않는 누에고치의 저온건조 방법, 저온 진공 감압 처리에 의해 고치 내강 내 침지액 침투방법 및 조사방법을 개발하여, 녹색형광 누에고치로부터 천연의 녹색형광색을 띄는 생사를 생산하였다. 그리고 이들 생산된 녹색형광 생사는 별도의 염색처리 없이 패션의류, 벽지, 조명등갓, 액세서리, 인테리어용품 등의 고부가가치 실크소재로 적용이 기대된다.

Keywords

References

  1. Hino R, Tomita M, Yoshizato K (2006) The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor. Biomaterials 27, 5715-5724. https://doi.org/10.1016/j.biomaterials.2006.07.028
  2. Kim SW, Yun EY, Kim SR, Park SW, Kang SW, Kwon OY, Goo TW (2011) Construction of transgenic silkworms expressing human stem cell factor (hSCF). J Life Sci 21, 12-17.
  3. Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y (2007) A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 71, 2943-2951. https://doi.org/10.1271/bbb.70353
  4. Kurihara H, Sezutsu H, Tamura T, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355, 976-980. https://doi.org/10.1016/j.bbrc.2007.02.055
  5. Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128, 531-544. https://doi.org/10.1016/j.jbiotec.2006.10.019
  6. Prudhomme JC and Coble P (2002) Perspectives in silkworm (Bombyx mori) transgenesis. Curr Sci 83, 432-438.
  7. Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G (2005) Biosynthesis and cocoonexport of a recombinant globular protein in transgenic silkworms. Transgenic Res 14, 463-472. https://doi.org/10.1007/s11248-005-4351-4
  8. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm using a piggyback transposonderived vector. Nat Biotechnol 18, 81-84. https://doi.org/10.1038/71978
  9. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21, 52-56. https://doi.org/10.1038/nbt771
  10. Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16, 449-465. https://doi.org/10.1007/s11248-007-9087-x
  11. Wurm FM (2003) Human therapeutic proteins from silkworms. Nat Biotechnol 21, 34-35. https://doi.org/10.1038/nbt0103-34
  12. Zhao Y, Li X, Cao G, Xue R, Gong C (2009) Expression of hIGFI in the silk glands of transgenic silkworms and in transformed silkworm cells. Sci China C Life Sci 52, 1131-1139. https://doi.org/10.1007/s11427-009-0148-7

Cited by

  1. Scalable and continuous nanomaterial integration with transgenic fibers for enhanced photoluminescence vol.4, pp.2, 2017, https://doi.org/10.1039/C6MH00423G
  2. Anderson light localization in biological nanostructures of native silk vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-017-02500-5