DOI QR코드

DOI QR Code

Study of the Hydrophilic Properties of Toughened Glass

강화유리 표면의 친수성 특성 조사에 관한 연구

  • Park, Sung Jin (Department of Smart Electrical Engineering, Daegu campus of KOREA Polytechnic) ;
  • Seo, Jin Woo (Department of Smart Electrical Engineering, Daegu campus of KOREA Polytechnic) ;
  • Lee, Seung Kyu (Department of Smart Electrical Engineering, Daegu campus of KOREA Polytechnic)
  • 박성진 (한국폴리텍대학교 대구캠퍼스 스마트전기과) ;
  • 서진우 (한국폴리텍대학교 대구캠퍼스 스마트전기과) ;
  • 이승규 (한국폴리텍대학교 대구캠퍼스 스마트전기과)
  • Received : 2012.11.16
  • Accepted : 2013.02.12
  • Published : 2013.02.25

Abstract

In this study, we assessed the hydrophilic characteristics of the surface of toughened glass used in smartphones by investigating the optical properties and contact angle characteristics of the plasma device. In this study, the characteristics were different depending on the partial pressure of the gas, input voltage, and degree of ionization of argon gas. In this study, the surface of the toughened glass became more hydrophilic, as indicated by contact angle and light spectrum, after plasma treatment than before the treatment.

본 연구에서는 플라즈마 장치의 광 특성과 접촉각 특성을 조사하여 스마트폰에 사용되는 강화유리 표면의 친수성 특성을 알아 보였다. 본 연구에서 공정 가스의 분압과 입력 전압의 정도에 대한 강화유리 표면의 친수화 정도를 조사하였다. 각 변수에 따라 아르곤 가스의 이온화 정도에 따라 차이가 있음을 알 수 있었다. 본 연구에서, 강화유리 표면은 처리되기 전과 비교하여 접촉각의 변화나 광방출 특성에서 나타난 것들을 토대로 친수화가 되었음을 알 수 있었다.

Keywords

References

  1. M. Laroussi, "Low temperature plasma-based sterilization: overview and state-of-the-art." Plasma Processes and Polymers 2, 391-400 (2005). https://doi.org/10.1002/ppap.200400078
  2. R. Brandenburg, J. Ehlbeck, M. Stieber, Th. von Woedtke, J. Zeymer, O. Schluter, and K. D. Weltmann, "Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet," Contrib. Plasma Phys. 47, 72-79 (2007). https://doi.org/10.1002/ctpp.200710011
  3. K. D. Weltmann, R. Brandenburg, Th. von Woedtke, J. Ehlbeck, R. Foest, M. Stieber, and E. Kindel, "Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets," Appl. Phys. 41, 194008 (2008).
  4. F. B. Rointan, Deposition Technologies for Films and Coatings Handbook (Noyes Publications, Park Ridge, NJ, USA, 1994).
  5. G. Francis, Ionization Phenomena in Gases (Butterworths Scientific Publication, London, UK, 1960).
  6. A. D. MacDonald and S. J. Tetenbaum, "Gaseous electronics handbook," in High Frequency and Microwave Discharges, Vol. 1 (Academic Press, New York, USA, 1978).
  7. K. G. Michlewicz, J. J. Urh, J. W. Carnahan, "A microwave induced plasma system for the maintenance of moderate power plasmas of helium, argon, nitrogen and air," J. Anal. At. Spectrometry 40B, 493-499 (1985).
  8. E, Poussel, J. M. Mermet, D. Deruaz, and C. Beaugrand, "Evaluation of a microwave-induced plasma as a soft ionization source in mass spectrometry," Anal. Chem. 60, 923-927 (1988). https://doi.org/10.1021/ac00160a018
  9. J. W. Coburn, R. A. Gottscho, and D. W. Hess, "On the balance between silylene and silyl radicals in rf glow discharges in silane: the effect on deposition rates of a-Si:H," J. Appl. Phys. 62, 2803-2811 (1897).
  10. H. Conrads and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Sci. Technol. 9, 441-454 (2000). https://doi.org/10.1088/0963-0252/9/4/301
  11. N. St J. Braithwaite and R. N. Franklin, "Reflections on electrical probes," Plasma Sources Sci. Technol. 9, 517-527 (2000). https://doi.org/10.1088/0963-0252/9/4/307