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Abstract 
 

Power converters produce a vast range of harmonics, subharmonics and interharmonics. Harmonics analyzing tools based on 
the Fast Fourier Transform (FFT) assume that only harmonics are present and the periodicity intervals are fixed, while these 
periodicity intervals are variable and long in the presence of interharmonics. Using FFT may lead to invalid and undesired results 
due to the above mentioned issues. They can also lead to problems such as frequency blending, spectral leakage and the 
picket-fence effect. In this paper, the group-harmonic weighting (GHW) approach has been presented to identify the 
interharmonics in a power system. Afterwards, a modified GHW has been introduced to calculate the proper bandwidth for 
analyzing the various values of interharmonics. Modifying this method leads to more precise results in the FFT of a waveform 
containing inter harmonics especially in power systems with a fundamental frequency drift or frequency interference. Numerical 
simulations have been performed to prove the efficiency of the presented algorithm in interharmonics detection and to increase 
the accuracy of the FFT and the GWH methods. 
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I. INTRODUCTION 
One of the important issues in terms of delivered power 

quality to consumers is power system harmonics. Quick 
advances in power electronic semiconductors and the use of 
nonlinear loads in industry will increase the harmonics in 
current and voltage waveforms, consequently [1]. 

For example, frequency converters produce a vast range of 
harmonics components that reduce the delivered energy 
quality and increase power losses with low reliability in 
power systems that result in the need for filtering devices [2], 
[3]. 

Interharmonics and subharmonics cannot be avoided in a 
harmonics’ debate. Interharmonics refers to the proportion of 
a system’s main frequency located between two harmonics. 
In other words, interharmonics are non-integer multiplies of 
the main harmonic component. For instance, in a waveform 
where the main harmonics frequency is 50 Hz, the harmonic 

components with frequencies of 72.3 Hz, 90 Hz and 125.7 Hz 
are interharmonics. Subharmonics are also a kind of 
interharmonics but with a frequency that is lower than the 
main frequency, like 40 Hz [4]. 

Accurate measurement of the harmonics in a waveform is 
important in order to control and protect a system or to design 
suitable filters to eliminate them. As a result, their 
identification is vital. However, various methods such as least 
squares, Kalman filtering and artificial neural networks have 
been used to identify the harmonics in a waveform [5]-[7]. 
Power quality detection methods are mainly based on a FFT 
that is fast and simple in implementation. Although, all of the 
mentioned methods have their own advantages, none of them 
has appropriate performance in detecting interharmonics 
especially with a drift in the fundamental frequency of a 
power network in real systems. 

Lin presented a GHW method based on the FFT [8]. In this 
case, around the main frequency, a bandwidth (τ) is 
considered to perform the FFT in an imaginary band. 
According to the numerical examples, a bandwidth obtained 
through trial and error and a good approximation of the 
values of the amplitude and frequency of an interharmonic 
are achieved in both the cases in which the main frequency is 
fixed and when it has a drift. In this paper, a novel algorithm 
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is presented to calculate the bandwidth efficiently and 
optimally. By using this method, the value of the bandwidth 
used in the GHW approach is calculated through an optimum 
algorithm which leads to operation at deferent frequencies 
and being expandable. 

In this paper, the GHW method is described in section II. 
The proposed algorithm to calculate the bandwidth is 
explained in section III. Numerical simulations have been 
done in the MATLAB environment to validate this proposed 
algorithm. The results are shown in section IV. 

 

II.  Group-Harmonic Weighting (GHW)  
 

As shown in [9], suppose the waveform is(t) is sampled at 
N discrete points using a sampling rate of fs where the 

truncation interval is 
s

NT
f

= . By using digital signal 

processing (DSP), the continuous signal is(t) can be converted 
into a discrete signal is[n] and can be transformed by the 
Discrete Fourier Transform (DFT) as follows: 
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where Is[k] denotes the DFT of is[n] at a frequency of fk 
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= . The inverse DFT which 

recovers the signal from its spectrum is given by: 
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By the Parseval relation in its discrete form, the power of 
the waveform, P, can be expressed as follows: 
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Therefore, the power at discrete frequency fk can be 
expressed as: 
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where k=0, 1, 2, …, N/2 -1. 
The RMS value of the harmonic amplitude at discrete 

frequency fk is: 
 

 [ ] [ ] 2 [ ]h k k sI f P f I k= =   (5) 
 

Due to spectral leakage, the power of the harmonic at fk 
may disperse over the frequency band around the fk. Hence 
the total harmonic power can be shown by a group in the 
frequency next to fk. Each group power (P*[fk]), is the total 
power between fk-Δk and fk+Δk. It is described as: 

 

 
Fig. 1. Frequency spectrum of interharmonics for small 
frequency deviation. 
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τ is an integer that represents the group bandwidth. Hence 
each harmonic’s amplitude can be estimated as follows: 

 

 * *[ ] [ ]s k kI f P f=    (7) 
 

By calculating a group power, the problems related to the 
spectral leakage will be solved. These problems are caused by 
measuring the interharmonics in a power system with a 
frequency drift. When more leakages can be gathered and 
considered in a group, it looks like they are in the dominant 
harmonic frequency. As a result, the amplitude of the 
interharmonics and subharmonics can be determined using 
this method [10]. 

 
A. Group-Harmonic Weighting Model using the 
Bandwidth 

At first, this model divides interharmonics into two parts 
which means “small frequency deviation” and “large 
frequency deviation” in decimal points [8]. Small frequency 
deviation includes 0.1 to 0.5 Hz in decimal points. On the 
other hand, large frequency deviation is more than 0.5 Hz in 
decimal points. Interharmonics are shown in Fig. 1 and 2 for 
small and large frequency deviations. Based on spectral 
analysis by the FFT for small frequency deviation (less or 
equal to 0.5 Hz), the second largest amplitude is on the right 
side of the dominant amplitude (Fig. 1). The second largest 
amplitude for the large frequency deviation (more than 0.5 
Hz) is on the left side of the dominant amplitude (Fig. 2). 

An interharmonic frequency is described as the total center 
frequency fk plus the frequency deviation ratio (F.D.R.) which 
means that fk+Δfk and that Δfk is used in calculating the 
F.D.R. 
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Fig. 2. Frequency spectrum of interharmonics for large frequency 
deviation. 

 
Overall, the system frequency can be moved in real 

networks. This means that the system frequency is not exactly 
50 Hz (e.g. 50 Hz is used in this paper) and that it may be 
more (50.2 Hz) or less (49.9 Hz). Therefore, the restored 
amplitude (R.A.) which is the interharmonic restored 
amplitude is defined as: 
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The R.A.S.F. is the restored amplitude in the system 
frequency and fk is the interharmonic central frequency. 
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The different frequency analysis and the interharmonic 
amplitude are studied and discussed using the FFT and the 
GHW. This is easy to show. First, only one harmonic 
component is injected into the main waveform (50 Hz and 
amplitude 1) and then it is surveyed under the FFT and the 
GHW. 

 

 sin(2 )a a a ai A f tp j= +    (11) 

For this purpose, the harmonic waveform in equation (11) 
with different deviations (small and large) is added to the 
original waveform, and then the FFT analysis of this 
waveform is shown in figures. In addition, by using the GHW 
method, the values of the F.D.R. and the R.A. are calculated 
and compared with the FFT results. It should be mentioned 
that, in the GHW method, the value of the bandwidth is 
considered as τ=4 which is recommended in [8] as the best 
bandwidth value. 

 
B. Without a System Frequency Drift (The system 
frequency has no movement) 

 
Fig. 3. FFT analysis at 73.1 Hz without system frequency drift. 

 
Fig. 4. FFT analysis at 73.9 Hz without system frequency drift. 

 
The system frequency, i.e. 50 Hz, is considered to be ideal 

and its amplitude has been normalized to 1 in following 
examples: 

 

Case 1: Small Frequency Deviation, fa=73.1 Hz, Ø=0°, 
Aa=0.5 

The FFT result is shown in Fig. 3. Using equation 8 in the 
GHW the F.D.R. is calculated for more than 73 Hz as: 

F.D.R.=0.1156≈0.1 
Therefore, in this case, the interharmonic frequency is 

73+0.1=73.1 Hz which matches the actual frequency. The 
R.A. is computed by equation 9: 

R.A.=0.4986≈0.5 
The interharmonic amplitude is almost 0.5 which is near to 

the actual one. 
As can be seen in Fig. 3, the decimal point of the 

frequency is not included in the FFT result, while using the 
GHW leads to an exact interharmonic frequency. Since the 
frequency deviation is small, the obtained frequency in the 
FFT is a small integer close to the real value (i.e. 73 Hz). 

 

Case 2: Large Frequency Deviation, fa=73.9 Hz, Ø=0°, 
Aa=0.5 

The FFT analysis is shown in Fig. 4. The F.D.R. and the 
R.A. can be calculated using equations 8 and 9: 

F.D.R.=0.8846≈0.9 
R.A.=0.4990≈0.5 
The interharmonic frequency while using the GHW is 

equal to 73+0.9=73.9 Hz. These results including the F.D.R. 
and the R.A. are near to the real ones. 

By observing Fig. 4, it can be seen that because of the 
large frequency deviation, the frequency obtained in the FFT 
is an integer value that is larger than the actual frequency. 
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Using the GHW, results in a precise value for the 
interharmonic frequency. 

The harmonic amplitude in the FFT and the GHW are 
same with a small difference when the system frequency is 
unchanged. 

 

C. With a System Frequency Drift (The system frequency 
has a small movement) 

The main frequency has been normalized with a frequency 
deviation to about 50.2 Hz and an amplitude of 1. The 
spectrum analysis result using the FFT in this frequency is 
shown in Fig. 5. 

The computed F.D.R. and R.A. are as follows: 
F.D.R.=0.201≈0.2 
R.A.=1.064 
In this case, the system frequency obtained is equal to 50.2 

Hz which is the same as actual frequency. It can be seen that 
the amount of R.A. is increased to about 0.064 in comparison 
with the actual amplitude which is caused by an inappropriate 
bandwidth. In this way, the R.A. needs to be corrected when 
the system frequency has a movement or change. To correct 
this issue, first of all, the R.A.S.F. of that movement should 
be calculated and then the R.A. obtained for each spectrum 
must be divided into the R.A.S.F. and reach the modified R.A. 
On the other hand, the F.D.R. calculation is accurate without 
any correction. It should be mentioned that the greater the 
main frequency deviation, the greater the value of the 
R.A.S.F. will be. 

To show the inaccuracy of the FFT in cases with a system 
frequency drift, Case 1 in section II.1.1 has been considered 
under the new condition with a main frequency change (50.2 
Hz). 

Fig. 6 shows the FFT result. The F.D.R. and the R.A. are 
as follows: 

F.D.R.=0.1411≈0.1 
R.A.=0.4905≈0.5 
As can be seen, the FFT and GHW results have a lot of 

differences due to the main frequency drift. This issue is one 
of the FFT method limitations. But the GHW could calculate 
the values more accurately. It should be mentioned that the 
greater the bandwidth value, the greater the accuracy in the 
R.A. of the interharmonics. However, this may cause some 
frequency interference with the neighbouring harmonics 
which can lead to inaccurate results of the F.D.R.. As 
mentioned above, τ=4 is recommended in [8] and used in this 
paper. 

III. BANDWIDTH CALCULATION 
The other limitation of the GHW is its frequency interference. 
This means that when a current or voltage signal has 
interharmonics near a harmonic, it may cause some 
interference leads to inappropriately identify the 
interharmonics’ frequency and amplitude. Assume that y(t) is 
a voltage or current signal: 
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Fig. 5. Spectrum analysis at 50.2 Hz. 

 
Fig. 6. FFT analysis at 73.9 Hz with system frequency drift. 

 
Fig. 7. FFT analysis at 53.6 Hz. 
 

1 1 2 2( ) cos(2 ) cos(2 )y t A f t A f tp p= +      (12) 
 

where the main component includes f1=50 Hz and A1=1 
and the interharmonic has a frequency of f2=53.6 Hz and an 
amplitude of A2=0.3.s 

Fig. 7 contains the FFT result of y(t). To analysis a signal 
using the GHW, τ=4 has been chosen as recommended in [8].  

The F.D.R. and the R.A. for two harmonics and 
interharmonics are as follows: 

F.D.R.1=0.201≈0.2205 
R.A.1=1.0323 
F.D.R.2=0.201≈0.1921 
R.A.2=1.0350 
As can be seen in Fig. 7, the FFT method is able to 

approximately calculate the interharmonic amplitude, but as 
before, it is unable to obtain the exact frequency of the 
interharmonic. The main point is the GHW method’s defect in 
computing interharmonic’s frequency and amplitude. As can 
be seen from the calculations, these amounts are completely 
wrong and make the accuracy of this method doubtful. 
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Fig. 8. Proposed algorithm to calculate the bandwidth in GHW 

 
By analyzing the recommended bandwidth, it is realized 

that the frequencies used in this part are mixed together. 
46<f1<54 
50<f2<58 
According to these amounts, it is clear that in the interval 

[50], [54] Hz, frequency interference prevents the proper 
computation of the interharmonic frequency and amplitude. 
Thus, the amount of bandwidth should be decreased. The 
problem of interference in the frequency limit will occur while 
choosing a bandwidth when a subharmonic is located near a 
main harmonic. To remedy this issue, the bandwidth should be 
reduced. 
In this paper, the presented algorithm calculates a suitable 
bandwidth for each frequency. It assumed that the 
frequencies of the main component and the harmonic 
components of a waveform are f1, f2, f3,…, fn, respectively. 
From Fig. 8, it can be seen that the proposed algorithm can 
calculate the bandwidth for the frequency of the harmonics, 
interharmonics and subharmonics separately. 
It can be seen in Fig. 8, that by using the proposed algorithm, 
the bandwidth can be calculated for each number of 
harmonics. It can also be seen that the amount of bandwidth 
is large enough to achieve a closer approximation of the 
harmonic amplitude. This value of the bandwidth is not only 
big enough to cover a vast range of group harmonics, but also 
small enough to prevent frequency interference. 

IV. SIMULATION AND COMPARISON 
In this section numerical simulations have been done using 

MATLAB to validate the presented algorithm. These 
simulations have been conducted on two main and two 

subordinate cases. 
In the first main case, several waves with the different 

frequencies and amplitudes used in [8] are simulated. Then 
the two subordinate cases containing a constant main 
frequency and a main frequency drift are considered and the 
results are gathered. In the second main case, several waves 
with different frequencies and amplitudes which have 
frequency interference are used and the two subordinate cases 
are imposed on them. The results show that the proposed 
algorithm efficiency in calculating the most proper bandwidth 
leads to greater accuracy in the frequency and amplitude of 
the interharmonics. 
 
A.  Using Waveforms with High Frequency Differences 

 

In this subsection, some waves with the characteristics used 
in [7] have been studied and are shown below: 
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The frequency values are shown in Table I. 
 

TABLE I 
 FREQUENCIES’ VALUES IN EQUATION 13 

f1 19.2 Hz 

f2 50.0 Hz 

f3 98.7 Hz 

f4 250.0 Hz 

f5 350.0 Hz 

f6 450.0 Hz 
 

TABLE II 
 AMPLITUDES AND FREQUENCIES OF HARMONICS IN S(T) WITHOUT 

SYSTEM FREQUENCY DRIFT USING FREQUENCIES IN TABLE I 

 Actual Value Using τ=4 Using proposed 
algorithm 

R.A.1 0.3 0.2981 0.3001 

F.D.R.1 0.2 0.2184 0.2249 

R.A.2 1.0 0.9971 0.9972 

F.D.R.2 0 0.0069 0.0140 

R.A.3 0.4 0.3936 0.3986 

F.D.R.3 0.7 0.6784 0.6733 

R.A.4 0.5 0.5002 0.5002 

F.D.R.4 0 0.0014 0.0040 

R.A.5 0.2 0.2001 0.2001 

F.D.R.5 0 0.0015 0.0047 

R.A.6 0.1 0.1000 0.1000 

F.D.R.6 0 0.0018 0.0061 
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Now, when the system main frequency is fixed (50 Hz), the 
numerical simulations are done while employing τ=4. 

As can be seen in tables II and III, in a case where there is 
no frequency interference, the bandwidth recommended in [8] 
and calculated by the proposed algorithm leads to almost 
identical results. In some instances, the proposed bandwidth 
has more accurate performance. 

Table III shows the results under system frequency drift 
(50.2 Hz). 

 
B. Using Waveforms with a low Frequency Differences to 
Model Frequency Interference 

 

In this part, the waves in equation 12 are simulated through 
the proposed algorithm and the GHW to compare these 
methods in the frequency interference model. 

As can be seen in tables IV and V, when there is a 
frequency interference, the amount of bandwidth τ=4 leads to 
poor results that are different from the actual values. By 
calculating the bandwidth through the presented algorithm, the 
frequency interference does not occur and more accurate 
results are obtained in the interharmonic’s frequency and 
amplitude. Therefore, for cases where the distance between the 
frequencies is more than 2x τ+1=9, the proposed algorithm is 
more efficient than using a fix value for τ (as it is taken to be 4) 

Table 5 shows the results when there is a frequency drift of 
0.2 (50.2 Hz). 

 
TABLE III 

AMPLITUDES AND FREQUENCIES OF HARMONICS IN S(T) WITH 
SYSTEM FREQUENCY DRIFT USING FREQUENCIES IN TABLE I 

 Actual Value Using τ=4 Using proposed algorithm 

R.A.1 0.3 0.3022 0.3051 

F.D.R.1 0.2 0.1981 0.2025 

R.A.2 1.0 0.9901 0.9957 

F.D.R.2 0.2 0.2231 0.2306 

R.A.3 0.4 0.3938 0.4007 

F.D.R.3 0.7 0.6769 0.6676 

R.A.4 0.5 0.4992 0.4995 

F.D.R.4 0 0.0067 0.0214 

R.A.5 0.2 0.1996 0.2000 

F.D.R.5 0 0.0128 0.0420 

R.A.6 0.1 0.0999 0.1005 

F.D.R.6 0 0.0227 0.0744 
 

TABLE IV 
AMPLITUDES AND FREQUENCIES OF HARMONICS IN EQUATION 12 

WITH FREQUENCY INTERFERENCE AND WITHOUT SYSTEM 
FREQUENCY DRIFT 

 Actual Value Using τ=4 Using proposed algorithm 

R.A.1 1.0 1.0323 0.9936 

F.D.R.1 0 0.2205 0.0348 

R.A.2 0.3 1.0350 0.2787 

F.D.R.2 0.6 0.1921 0.5816 
 
 

TABLE V 
AMPLITUDES AND FREQUENCIES OF HARMONICS IN EQUATION 12 

WITH FREQUENCY INTERFERENCE AND SYSTEM FREQUENCY DRIFT 
 Actual Value Using τ=4 Using proposed algorithm 

R.A.1 1 1.0368 0.9836 

F.D.R.1 0.2 0.2820 0.1911 

R.A.2 0.3 1.0355 0.3041 

F.D.R.2 0.6 0.2122 0.5779 
 

V. CONCLUSIONS 
Identifying interharmonics using the GHW method based 

on the FFT has been developed to calculate the frequency and 
amplitude more accurately. The results verify that the GHW 
can be adapted with a frequency drift in the power system, 
which is not possible for the FFT or the DFT. Theoretically 
there is no limitation in location of the interharmonics, but 
the group bandwidth (τ) of each interharmonic should be 
chosen properly. Therefore, the bandwidth selection is very 
important. One of the GHW’s defects is using the same 
bandwidth for all of the frequencies which has been modified 
by the proposed algorithm. Using the presented algorithm 
results in suitable values of τ for each frequency that show 
better results in numerical simulations, especially when the 
harmonics’ frequencies are close to each other and may get 
interference.   
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