DOI QR코드

DOI QR Code

Development of animal experimental periodontitis models

  • Do, Min-Jae (Department of Chemistry, Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology) ;
  • Kim, Kyuri (Department of Chemistry, Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology) ;
  • Lee, Haeshin (Department of Chemistry, Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology) ;
  • Cha, Seho (Department of Life Science, Dongguk University) ;
  • Seo, Taegun (Department of Life Science, Dongguk University) ;
  • Park, Hee-Jung (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Lee, Jeong-Soon (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Kim, Tae-Il (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry)
  • Received : 2012.01.02
  • Accepted : 2012.03.04
  • Published : 2013.08.31

Abstract

Purpose: An animal periodontitis model is essential for research on the pathogenesis and treatment of periodontal disease. In this study, we have introduced a lipopolysaccharide (LPS) of a periodontal pathogen to the alveolar bone defect of experimental animals and investigated its suitability as a periodontitis model. Methods: Alveolar bone defects were made in both sides of the mandibular third premolar region of nine beagle dogs. Then, the animals were divided into the following groups: silk ligature tied on the cervical region of tooth group, Porphyromonas gingivalis LPS (P.g. LPS)-saturated collagen with silk ligature group, and no ligature or P.g. LPS application group as the control. The plaque index and gingival index were measured at 0 and 4 weeks postoperatively. The animals were then euthanized and prepared for histologic evaluation. Results: The silk ligature group and P.g. LPS with silk ligature group showed a significantly higher plaque index at 4 weeks compared to the control (P<0.05). No significant difference was found in the plaque index between the silk ligature group and P.g. LPS with silk ligature group. The P.g. LPS with silk ligature group showed a significantly higher gingival index compared to the silk ligature group or the control at 4 weeks (P<0.05). Histologic examination presented increased inflammatory cell infiltration in the gingival tissue and alveolar bone of the P.g. LPS with silk ligature group. Conclusions: An additional P.g. LPS-saturated collagen with silk ligature ensured periodontal inflammation at 4 weeks. Therefore, P.g. LPS with silk ligature application to surgically created alveolar bone defects may be a candidate model for experimental periodontitis.

Keywords

References

  1. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 2005;366:1809-20. https://doi.org/10.1016/S0140-6736(05)67728-8
  2. Schou S, Holmstrup P, Kornman KS. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol 1993;64:497-508. https://doi.org/10.1902/jop.1993.64.6.497
  3. Yamasaki A, Nikai H, Niitani K, Ijuhin N. Ultrastructure of the junctional epithelium of germfree rat gingiva. J Periodontol 1979;50:641-8. https://doi.org/10.1902/jop.1979.50.12.641
  4. Eggert FM, Germain JP, Cohen B. The gingival epithelium of rodent molars with limited eruption. Acta Anat (Basel) 1980;107:297-306. https://doi.org/10.1159/000145254
  5. Attström R, Graf-de Beer M, Schroeder HE. Clinical and histologic characteristics of normal gingiva in dogs. J Periodontal Res 1975;10:115-27. https://doi.org/10.1111/j.1600-0765.1975.tb00016.x
  6. Haney JM, Zimmerman GJ, Wikesjo UM. Periodontal repair in dogs: evaluation of the natural disease model. J Clin Periodontol 1995;22:208-13.
  7. Wikesjo UM, Kean CJ, Zimmerman GJ. Periodontal repair in dogs: supraalveolar defect models for evaluation of safety and efficacy of periodontal reconstructive therapy. J Periodontol 1994;65:1151-7. https://doi.org/10.1902/jop.1994.65.12.1151
  8. Holland M, Boring JG, Boyle CR, Pickrum HM, Jeffcoat MK. Radiographic bone loss correlations and technetium- 99m-MDP bone uptake in ligature-induced periodontal disease in the beagle. Vet Radiol Ultrasound 1998;39:366-74. https://doi.org/10.1111/j.1740-8261.1998.tb01622.x
  9. Clergeau LP, Danan M, Clergeau-Guerithault S, Brion M. Healing response to anorganic bone implantation in periodontal intrabony defects in dogs. Part I. Bone regeneration. A microradiographic study. J Periodontol 1996;67: 140-9. https://doi.org/10.1902/jop.1996.67.2.140
  10. Hayashi C, Kinoshita A, Oda S, Mizutani K, Shirakata Y, Ishikawa I. Injectable calcium phosphate bone cement provides favorable space and a scaffold for periodontal regeneration in dogs. J Periodontol 2006;77:940-6. https://doi.org/10.1902/jop.2006.050283
  11. Andrian E, Grenier D, Rouabhia M. Porphyromonas gingivalis- epithelial cell interactions in periodontitis. J Dent Res 2006;85:392-403. https://doi.org/10.1177/154405910608500502
  12. Dumitrescu AL, Abd-El-Aleem S, Morales-Aza B, Donaldson LF. A model of periodontitis in the rat: effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. J Clin Periodontol 2004;31: 596-603. https://doi.org/10.1111/j.1600-051X.2004.00528.x
  13. Silness J, Loe H. Periodontal disease in pregnancy: II. Correlation between oral hygiene and periodontal condtion. Acta Odontol Scand 1964;22:121-35. https://doi.org/10.3109/00016356408993968
  14. Loe H, Silness J. Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontol Scand 1963;21:533-51. https://doi.org/10.3109/00016356309011240
  15. Page RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease: a summary of current work. Lab Invest 1976;34:235-49.
  16. Lallam-Laroye C, Escartin Q, Zlowodzki AS, Barritault D, Caruelle JP, Baroukh B, et al. Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic. J Biomed Mater Res A 2006;79:675-83.
  17. Peruzzo DC, Benatti BB, Antunes IB, Andersen ML, Sallum EA, Casati MZ, et al. Chronic stress may modulate periodontal disease: a study in rats. J Periodontol 2008;79: 697-704. https://doi.org/10.1902/jop.2008.070369
  18. Lindhe J, Hamp S, Loe H. Experimental periodontitis in the beagle dog. J Periodontal Res 1973;8:1-10. https://doi.org/10.1111/j.1600-0765.1973.tb00735.x
  19. Allaker RP, de Rosayro R, Young KA, Hardie JM. Prevalence of Porphyromonas and Prevotella species in the dental plaque of dogs. Vet Rec 1997;140:147-8. https://doi.org/10.1136/vr.140.6.147
  20. Garrison SW, Nichols FC. LPS-elicited secretory responses in monocytes: altered release of $PGE_2$ but not $IL_{-1}$ beta in patients with adult periodontitis. J Periodontal Res 1989; 24:88-95. https://doi.org/10.1111/j.1600-0765.1989.tb00862.x
  21. Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 1991;26(3 Pt 2):230-42. https://doi.org/10.1111/j.1600-0765.1991.tb01649.x
  22. Rogers JE, Li F, Coatney DD, Rossa C, Bronson P, Krieder JM, et al. Actinobacillus actinomycetemcomitans lipopolysaccharide- mediated experimental bone loss model for aggressive periodontitis. J Periodontol 2007;78:550-8. https://doi.org/10.1902/jop.2007.060321
  23. Egelberg J. Local effect of diet on plaque formation and development of gingivitis in dogs: 3. Effect of frequency of meals and tube feeding. Odontol Revy 1965;16:50-60.
  24. Hamp SE, Lindhe J, Loe H. Experimental periodontitis in the beagle dog. J Periodontal Res 1972;(10):13-4.
  25. Lindhe J, Hamp SE, Loe H. Experimental periodontitis in the beagle dog. Int Dent J 1973;23:432-7.
  26. Lindhe J, Ericsson I. Effect of ligature placement and dental plaque on periodontal tissue breakdown in the dog. J Periodontol 1978;49:343-50. https://doi.org/10.1902/jop.1978.49.7.343
  27. Lindemann RA, Economou JS, Rothermel H. Production of interleukin-1 and tumor necrosis factor by human peripheral monocytes activated by periodontal bacteria and extracted lipopolysaccharides. J Dent Res 1988;67:1131-5. https://doi.org/10.1177/00220345880670081401
  28. Garrison SW, Holt SC, Nichols FC. Lipopolysaccharidestimulated $PGE_2$ release from human monocytes. Comparison of lipopolysaccharides prepared from suspected periodontal pathogens. J Periodontol 1988;59:684-7. https://doi.org/10.1902/jop.1988.59.10.684
  29. Jiang Y, Mehta CK, Hsu TY, Alsulaimani FF. Bacteria induce osteoclastogenesis via an osteoblast-independent pathway. Infect Immun 2002;70:3143-8. https://doi.org/10.1128/IAI.70.6.3143-3148.2002
  30. Page RC, Schroeder HE. Spontaneous chronic periodontitis in adult dogs: a clinical and histopathological survey. J Periodontol 1981;52:60-73. https://doi.org/10.1902/jop.1981.52.2.60

Cited by

  1. Molecular identification of black‐pigmented bacteria from subgingival samples of cats suffering from periodontal disease vol.56, pp.4, 2013, https://doi.org/10.1111/jsap.12319
  2. Macrophage‐mediated nanoparticle delivery to the periodontal lesions in established murine model via Pg‐LPS induction vol.44, pp.7, 2013, https://doi.org/10.1111/jop.12269
  3. Effect of sclerostin removal in vivo on experimental periodontitis in mice vol.58, pp.2, 2016, https://doi.org/10.2334/josnusd.15-0690
  4. Increase in receptor activator of nuclear factor κB ligand/osteoprotegerin ratio in peri-implant gingiva exposed to Porphyromonas gingivalis lipopolysaccharide vol.11, pp.1, 2013, https://doi.org/10.1016/j.jds.2015.10.005
  5. The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing vol.46, pp.5, 2013, https://doi.org/10.5051/jpis.2016.46.5.303
  6. Periodontal and endodontic pathology delays extraction socket healing in a canine model vol.47, pp.3, 2017, https://doi.org/10.5051/jpis.2017.47.3.143
  7. Microbiota of periodontal pockets and root canals in induced experimental periodontal disease in dogs vol.10, pp.4, 2013, https://doi.org/10.1111/jicd.12439
  8. Effect of age on dental plaque deposition and its control by ultrasonic scaling, dental hygiene chew, and chlorhexidine (0.2%w/v) in dogs vol.12, pp.11, 2013, https://doi.org/10.14202/vetworld.2019.1872-1876
  9. The Antioxidant Effect of Curcumin and Rutin on Oxidative Stress Biomarkers in Experimentally Induced Periodontitis in Hyperglycemic Wistar Rats vol.26, pp.5, 2013, https://doi.org/10.3390/molecules26051332
  10. Recombinant thrombomodulin lectin‐like domain attenuates Porphyromonas gingivalis lipopolysaccharide‐induced osteoclastogenesis and periodontal bone resorption vol.92, pp.11, 2013, https://doi.org/10.1002/jper.20-0732