References
- Collin, N. and X. de Radigues. 2009. Vaccine production capacity for seasonal and pandemic (H1N1) 2009 influenza. Vaccine 27: 5184-5186. https://doi.org/10.1016/j.vaccine.2009.06.034
- Shirakawa, T. 2009. Clinical trial design for adenoviral gene therapy products. Drug News Perspect. 22: 140-145. https://doi.org/10.1358/dnp.2009.22.3.1354090
- Muruve, D. A. 2004. The innate immune response to adenovirus vectors. Hum. Gene Ther. 15: 1157-1166. https://doi.org/10.1089/hum.2004.15.1157
- Zhu, J., X. Huang, and Y. Yang. 2007. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor- dependent and -independent pathways. J. Virol. 81: 3170-3180. https://doi.org/10.1128/JVI.02192-06
- Nociari, M., O. Ocheretina, J. W. Schoggins, and E. Falck- Pedersen. 2007. Sensing infection by adenovirus: Toll-like receptor- independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator. J. Virol. 81: 4145-4157. https://doi.org/10.1128/JVI.02685-06
- Brandtzaeg, P. and R. Pabst. 2004. Let's go mucosal: communication on slippery ground. Trends Immunol. 25: 570- 577. https://doi.org/10.1016/j.it.2004.09.005
- Suzuki, K. and S. Fagarasan. 2008. How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol. 29: 523-531. https://doi.org/10.1016/j.it.2008.08.001
- Ichinohe, T., A. Iwasaki, and H. Hasegawa. 2008. Innate sensors of influenza virus: clues to developing better intranasal vaccines. Expert Rev. Vaccines 7: 1435-1445. https://doi.org/10.1586/14760584.7.9.1435
- Yuki, Y. and H. Kiyono. 2003. New generation of mucosal adjuvants for the induction of protective immunity. Rev. Med. Virol. 13: 293-310. https://doi.org/10.1002/rmv.398
- Kunkel, E. J. and E. C. Butcher. 2003. Plasma-cell homing. Nat. Rev. Immunol. 3: 822-829. https://doi.org/10.1038/nri1203
- van Ginkel, F. W., R. J. Jackson, Y. Yuki, and J. R. McGhee. 2000. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165: 4778-4782. https://doi.org/10.4049/jimmunol.165.9.4778
- Mutsch, M., W. Zhou, P. Rhodes, M. Bopp, R. T. Chen, T. Linder, C. Spyr, and R. Steffen. 2004. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N. Engl. J. Med. 350: 896-903. https://doi.org/10.1056/NEJMoa030595
- Cuburu, N., M. N. Kweon, J. H. Song, C. Hervouet, C. Luci, J. B. Sun, P. Hofman, J. Holmgren, F. Anjuere, and C. Czerkinsky. 2007. Sublingual immunization induces broadbased systemic and mucosal immune responses in mice. Vaccine 25: 8598-8610. https://doi.org/10.1016/j.vaccine.2007.09.073
- Song, J. H., H. H. Nguyen, N. Cuburu, T. Horimoto, S. Y. Ko, S. H. Park, C. Czerkinsky, and M. N. Kweon. 2008. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc. Natl. Acad. Sci. U. S. A. 105: 1644-1649. https://doi.org/10.1073/pnas.0708684105
- Kweon, M. N. 2011. Sublingual mucosa: A new vaccination route for systemic and mucosal immunity. Cytokine 54: 1-5. https://doi.org/10.1016/j.cyto.2010.12.014
- Shim, B. S., Y. K. Choi, C. H. Yun, E. G. Lee, Y. S. Jeon, S. M. Park, I. S. Cheon, D. H. Joo, C. H. Cho, M. S. Song, S. U. Seo, Y. H. Byun, H. J. Park, H. Poo, B. L. Seong, J. O. Kim, H. H. Nguyen, K. Stadler, D. W. Kim, K. J. Hong, C. Czerkinsky, and M. K. Song. 2011. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One 6: e27953. https://doi.org/10.1371/journal.pone.0027953
- He, T. C., S. Zhou, L. T. da Costa, J. Yu, K. W. Kinzler, and B. Vogelstein. 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. U. S. A. 95: 2509-2514. https://doi.org/10.1073/pnas.95.5.2509
- Wilson, I. A. and N. J. Cox. 1990. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 8: 737-771. https://doi.org/10.1146/annurev.iy.08.040190.003513
- Brandtzaeg, P. 2003. Role of secretory antibodies in the defence against infections. Int. J. Med. Microbiol. 293: 3-15. https://doi.org/10.1078/1438-4221-00241
- Gao, W., A. C. Soloff, X. Lu, A. Montecalvo, D. C. Nguyen, Y. Matsuoka, P. D. Robbins, D. E. Swayne, R. O. Donis, J. M. Katz, S. M. Barratt-Boyes, and A. Gambotto. 2006. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J. Virol. 80: 1959-1964. https://doi.org/10.1128/JVI.80.4.1959-1964.2006
- Hoelscher, M. A., S. Garg, D. S. Bangari, J. A. Belser, X. Lu, I. Stephenson, R. A. Bright, J. M. Katz, S. K. Mittal, and S. Sambhara. 2006. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 367: 475-481. https://doi.org/10.1016/S0140-6736(06)68076-8
- Van Kampen, K. R., Z. Shi, P. Gao, J. Zhang, K. W. Foster, D. T. Chen, D. Marks, C. A. Elmets, and D. C. Tang. 2005. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine 23: 1029-1036. https://doi.org/10.1016/j.vaccine.2004.07.043
- Vemula, S. V. and S. K. Mittal. 2010. Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opin. Biol. Ther. 10: 1469-1487. https://doi.org/10.1517/14712598.2010.519332
- Yu, J. R., S. Kim, J. B. Lee, and J. Chang. 2008. Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J. Virol. 82: 2350-2357. https://doi.org/10.1128/JVI.02372-07
- Croyle, M. A., A. Patel, K. N. Tran, M. Gray, Y. Zhang, J. E. Strong, H. Feldmann, and G. P. Kobinger. 2008. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS One 3: e3548. https://doi.org/10.1371/journal.pone.0003548
- Domm, W., L. Brooks, H. L. Chung, C. Feng, W. J. Bowers, G. Watson, J. L. McGrath, and S. Dewhurst. 2011. Robust antigen-specific humoral immune responses to sublingually delivered adenoviral vectors encoding HIV-1 Env: association with mucoadhesion and efficient penetration of the sublingual barrier. Vaccine 29: 7080-7089. https://doi.org/10.1016/j.vaccine.2011.07.008
- Appledorn, D. M., Y. A. Aldhamen, S. Godbehere, S. S. Seregin, and A. Amalfitano. 2011. Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms Toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting Ad5 immunity. Clin. Vaccine Immunol. 18: 150-160. https://doi.org/10.1128/CVI.00341-10
Cited by
- Viral vector-based influenza vaccines vol.12, pp.11, 2013, https://doi.org/10.1080/21645515.2016.1210729
- Baculovirus Displaying Hemagglutinin Elicits Broad Cross-Protection against Influenza in Mice vol.11, pp.3, 2013, https://doi.org/10.1371/journal.pone.0152485
- The Next Generation of Influenza Vaccines: Towards a Universal Solution vol.9, pp.1, 2013, https://doi.org/10.3390/vaccines9010026