DOI QR코드

DOI QR Code

Increased Lymphocyte Infiltration in Rheumatoid Arthritis Is Correlated with an Increase in LTi-like Cells in Synovial Fluid

  • Koo, Jihye (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kim, Soochan (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Jung, Woong Jae (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Lee, Ye Eun (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Song, Gwan Gyu (Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital) ;
  • Kim, Kyung-Su (Department of Otorhinolaryngology, Human Barrier Research Institute, Yonsei University College of Medicine) ;
  • Kim, Mi-Yeon (Department of Bioinformatics and Life Science, Soongsil University)
  • Received : 2013.11.15
  • Accepted : 2013.12.12
  • Published : 2013.12.31

Abstract

In this study, we compared the immune cell populations in rheumatoid arthritis (RA) synovial fluid, which shows lymphoid tissue-like structure, with those in tonsils, which are normal secondary lymphoid tissues. Firstly, we found that $CD4^-CD11b^+$ macrophages were the major population in RA synovial fluid and that B cells were the major population in tonsils. In addition, synovial fluid from patients with osteoarthritis, which is a degenerative joint disease, contained $CD4^+CD11b^+$monocytes as the major immune cell population. Secondly, we categorized three groups based on the proportion of macrophages found in RA synovial fluid: (1) the macrophage-high group, which contained more than 80% macrophages; (2) the macrophage-intermediate group, which contained between 40% and 80% macrophages; and (3) the macrophage-low group, which contained less than 40% macrophages. In the macrophage-low group, more lymphoid tissue inducer (LTi)-like cells were detected, and the expression of OX40L and TRANCE in these cells was higher than that in the other groups. In addition, in this group, the suppressive function of regulatory T cells was downregulated. Finally, CXCL13 expression was higher in RA synovial fluid than in tonsils, but CCL21 expression was comparable in synovial fluid from all groups and in tonsils. These data demonstrate that increased lymphocyte infiltration in RA synovial fluid is correlated with an increase in LTi-like cells and the elevation of the chemokine expression.

Keywords

References

  1. Yanni, G., A. Whelan, C. Feighery, and B. Bresnihan. 1994. Synovial tissue macrophages and joint erosion in rheumatoid arthritis. Ann. Rheum. Dis. 53: 39-44. https://doi.org/10.1136/ard.53.1.39
  2. Kinne, R. W., R. Brauer, B. Stuhlmuller, E. Palombo-Kinne, and G. R. Burmester. 2000. Macrophages in rheumatoid arthritis. Arthritis Res. 2: 189-202. https://doi.org/10.1186/ar86
  3. Cutolo, M., A. Sulli, A. Barone, B. Seriolo, and S. Accardo. 1993. Macrophages, synovial tissue and rheumatoid arthritis. Clin. Exp. Rheumatol. 11: 331-339.
  4. Young, C. L., T. C. Adamson, 3rd, J. H. Vaughan, and R. I. Fox. 1984. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum. 27: 32-39. https://doi.org/10.1002/art.1780270106
  5. Schroder, A. E., A. Greiner, C. Seyfert, and C. Berek. 1996. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl. Acad. Sci. U. S. A. 93: 221-225.
  6. Takemura, S., A. Braun, C. Crowson, P. J. Kurtin, R. H. Cofield, W. M. O'Fallon, J. J. Goronzy, and C. M. Weyand. 2001. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167: 1072-1080. https://doi.org/10.4049/jimmunol.167.2.1072
  7. Cupedo, T., W. Jansen, G. Kraal, and R. E. Mebius. 2004. Induction of secondary and tertiary lymphoid structures in the skin. Immunity 21: 655-667. https://doi.org/10.1016/j.immuni.2004.09.006
  8. Timmer, T. C., B. Baltus, M. Vondenhoff, T. W. Huizinga, P. P. Tak, C. L. Verweij, R. E. Mebius, and T. C. van der Pouw Kraan. 2007. Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum. 56: 2492-2502. https://doi.org/10.1002/art.22748
  9. Ngo, V. N., H. Korner, M. D. Gunn, K. N. Schmidt, D. S. Riminton, M. D. Cooper, J. L. Browning, J. D. Sedgwick, and J. G. Cyster. 1999. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189: 403-412. https://doi.org/10.1084/jem.189.2.403
  10. Wengner, A. M., U. E. Hopken, P. K. Petrow, S. Hartmann, U. Schurigt, R. Brauer, and M. Lipp. 2007. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum. 56: 3271- 3283. https://doi.org/10.1002/art.22939
  11. McInnes, I. B. and G. Schett. 2007. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7: 429-442. https://doi.org/10.1038/nri2094
  12. Shi, K., K. Hayashida, M. Kaneko, J. Hashimoto, T. Tomita, P. E. Lipsky, H. Yoshikawa, and T. Ochi. 2001. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J. Immunol. 166: 650-655. https://doi.org/10.4049/jimmunol.166.1.650
  13. Pickens, S. R., N. D. Chamberlain, M. V. Volin, R. M. Pope, N. E. Talarico, A. M. Mandelin, 2nd, and S. Shahrara. 2011. Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 63: 2884-2893. https://doi.org/10.1002/art.30493
  14. Matsui, T., T. Akahoshi, R. Namai, A. Hashimoto, Y. Kurihara, M. Rana, A. Nishimura, H. Endo, H. Kitasato, S. Kawai, K. Takagishi, and H. Kondo. 2001. Selective recruitment of CCR6-expressing cells by increased production of MIP-3 alpha in rheumatoid arthritis. Clin. Exp. Immunol. 125: 155-161. https://doi.org/10.1046/j.1365-2249.2001.01542.x
  15. Bruhl, H., M. Mack, M. Niedermeier, D. Lochbaum, J. Scholmerich, and R. H. Straub. 2008. Functional expression of the chemokine receptor CCR7 on fibroblast-like synoviocytes. Rheumatology (Oxford) 47: 1771-1774. https://doi.org/10.1093/rheumatology/ken383
  16. Calmon-Hamaty, F., B. Combe, M. Hahne, and J. Morel. 2011. Lymphotoxin alpha stimulates proliferation and pro-inflammatory cytokine secretion of rheumatoid arthritis synovial fibroblasts. Cytokine 53: 207-214. https://doi.org/10.1016/j.cyto.2010.10.010
  17. Mebius, R. E., P. Rennert, and I. L. Weissman. 1997. Developing lymph nodes collect $CD4^+$CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7: 493-504. https://doi.org/10.1016/S1074-7613(00)80371-4
  18. Kim, M. Y., F. M. Gaspal, H. E. Wiggett, F. M. McConnell, A. Gulbranson-Judge, C. Raykundalia, L. S. Walker, M. D. Goodall, and P. J. Lane. 2003. CD4(+)CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18: 643-654. https://doi.org/10.1016/S1074-7613(03)00110-9
  19. Eberl, G., S. Marmon, M. J. Sunshine, P. D. Rennert, Y. Choi, and D. R. Littman. 2004. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5: 64-73. https://doi.org/10.1038/ni1022
  20. Kim, M. Y., F. M. McConnell, F. M. Gaspal, A. White, S. H. Glanville, V. Bekiaris, L. S. Walker, J. Caamano, E. Jenkinson, G. Anderson, and P. J. Lane. 2007. Function of $CD4^+$CD3- cells in relation to B- and T-zone stroma in spleen. Blood 109: 1602-1610. https://doi.org/10.1182/blood-2006-04-018465
  21. Meier, D., C. Bornmann, S. Chappaz, S. Schmutz, L. A. Otten, R. Ceredig, H. Acha-Orbea, and D. Finke. 2007. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26: 643-654. https://doi.org/10.1016/j.immuni.2007.04.009
  22. Kim, M. Y., S. Rossi, D. Withers, F. McConnell, K. M. Toellner, F. Gaspal, E. Jenkinson, G. Anderson, and P. L. Lane. 2008. Heterogeneity of lymphoid tissue inducer cell populations present in embryonic and adult mouse lymphoid tissues. Immunology 124: 166-174. https://doi.org/10.1111/j.1365-2567.2007.02750.x
  23. Kim, S., S. Han, D. R. Withers, F. Gaspal, J. Bae, S. Baik, H. C. Shin, K. S. Kim, V. Bekiaris, G. Anderson, P. Lane, and M. Y. Kim. 2011. CD117(+) CD3(-) CD56(-) OX40Lhigh cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues. Eur. J. Immunol. 41: 1563-1572. https://doi.org/10.1002/eji.201040915
  24. Cupedo, T., N. K. Crellin, N. Papazian, E. J. Rombouts, K. Weijer, J. L. Grogan, W. E. Fibbe, J. J. Cornelissen, and H. Spits. 2009. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 10: 66-74. https://doi.org/10.1038/ni.1668
  25. Kim, M. Y., K. S. Kim, F. McConnell, and P. L. Lane. 2009. Lymphoid tissue inducer cells: architects of CD4 immune responses in mice and men. Clin. Exp. Immunol. 157: 20-26. https://doi.org/10.1111/j.1365-2249.2009.03932.x
  26. Withers D. R., F. M. Gaspal, V. Bekiaris, F. M. McConnell, M. Kim, G. Anderson, and P. J. Lane. 2011. OX40 and CD30 signals in $CD4^+$ T-cell effector and memory function: a distinct role for lymphoid tissue inducer cells in maintaining $CD4^+$ T-cell memory but not effector function. Immunol. Rev. 244: 134-148. https://doi.org/10.1111/j.1600-065X.2011.01057.x
  27. Radin, E. L., I. L. Paul, and R. M. Rose. 1972. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1: 519-522.
  28. Buckwalter, J. A. and H. J. Mankin. 1998. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47: 487-504.
  29. Luther, S. A., K. M. Ansel, and J. G. Cyster. 2003. Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J. Exp. Med. 197: 1191-1198. https://doi.org/10.1084/jem.20021294
  30. Ohl, L., G. Henning, S. Krautwald, M. Lipp, S. Hardtke, G. Bernhardt, O. Pabst, and R. Forster. 2003. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 197: 1199-1204. https://doi.org/10.1084/jem.20030169
  31. Amett, F. C., S. M. Edworthy, D. A. Bloch, D. J. McShane, J. F. Fries, N. S. Cooper, L. A. Healey, S. R. Kaplan, M. H. Liang, H. S. Luthra, T. A. Medsger, D. M. Mitchell, D. H. Neustadt, R. S. Pinals, J. G. Schaller, J. T. Sharp, R. L. Wilder, and G. G. Hunder. 1988. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. https://doi.org/10.1002/art.1780310302
  32. Wells, D. A., M. Benesch, M. R. Loken, C. Vallejo, D. Myerson, W. M. Leisenring, and H. J. Deeg. 2003. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood 102: 394-403. https://doi.org/10.1182/blood-2002-09-2768
  33. Shimizu, J., S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi. 2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3: 135-142. https://doi.org/10.1038/ni759
  34. Thurlings, R. M., C. A. Wijbrandts, R. E. Mebius, T. Cantaert, H. J. Dinant, T. C. van der Pouw-Kraan, C. L. Verweij, D. Baeten, and P. P. Tak. 2008. Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis Rheum. 58: 1582-1589. https://doi.org/10.1002/art.23505

Cited by

  1. OX40, OX40L and Autoimmunity: a Comprehensive Review vol.50, pp.3, 2013, https://doi.org/10.1007/s12016-015-8498-3
  2. Proinflammatory M1 Macrophages Inhibit RANKL-Induced Osteoclastogenesis vol.84, pp.10, 2016, https://doi.org/10.1128/iai.00461-16
  3. Pathological and therapeutic roles of innate lymphoid cells in diverse diseases vol.40, pp.11, 2017, https://doi.org/10.1007/s12272-017-0974-2
  4. Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases vol.13, pp.3, 2017, https://doi.org/10.1038/nrrheum.2016.218
  5. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease vol.10, pp.3, 2017, https://doi.org/10.1242/dmm.027409
  6. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases vol.40, pp.4, 2013, https://doi.org/10.1007/s00281-018-0670-4
  7. Chronic Inflammation: A Common Promoter in Tertiary Lymphoid Organ Neogenesis vol.10, pp.None, 2013, https://doi.org/10.3389/fimmu.2019.02938
  8. Dysregulation of Innate Lymphoid Cells in Patients with Active Rheumatoid Arthritis and Mice with Collagen-Induced Arthritis vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/1915068