DOI QR코드

DOI QR Code

Immunostimulatory Effects of Silica Nanoparticles in Human Monocytes

  • Yang, Eun-Jeoung (Department of Microbiology, The Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine) ;
  • Choi, In-Hong (Department of Microbiology, The Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine)
  • Received : 2013.05.09
  • Accepted : 2013.05.30
  • Published : 2013.06.30

Abstract

Amorphous silica particles, whose applications are increasing in many biomedical fields, are known to be less toxic than crystalline silica. In this study, the inflammatory effects of amorphous silica nanoparticles were investigated using 30-nm amorphous silica nanoparticles and human peripheral blood mononuclear cells (PBMCs) or purified monocytes. As a result, production of IL-$1{\beta}$ and IL-8 were increased. In addition, the mitochondrial reactive oxygen species (ROS) was detected, which may lead to mitochondrial membrane disruption. Most importantly, inflammasome formation was observed. Therefore, these results provide immunological information about amorphous silica nanoparticles and suggest that amorphous silica nanoparticles can evoke innate immune reactions in human monocytes through production of IL-$1{\beta}$ and IL-8.

Keywords

References

  1. Hirsch, L. R., R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100: 13549-13554. https://doi.org/10.1073/pnas.2232479100
  2. Bharali, D. J., I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak. 2005. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. U. S. A. 102: 11539-11544. https://doi.org/10.1073/pnas.0504926102
  3. Roy, I., T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad. 2005. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. U. S. A. 102: 279-284. https://doi.org/10.1073/pnas.0408039101
  4. Bottini, M., F. D'Annibale, A. Magrini, F. Cerignoli, Y. Arimura, M. I. Dawson, E. Bergamaschi, N. Rosato, A. Bergamaschi, and T. Mustelin. 2007. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int. J. Nanomedicine 2: 227-233.
  5. Verraedt, E., M. Pendela, E. Adams, J. Hoogmartens, and J. A. Martens. 2010. Controlled release of chlorhexidine from amorphous microporous silica. J. Control. Release. 142: 47-52. https://doi.org/10.1016/j.jconrel.2009.09.022
  6. Zhang, F. F., Q. Wan, C. X. Li, X. L. Wang, Z. Q. Zhu, Y. Z. Xian, L. T. Jin, and K. Yamamoto. 2004. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles. Anal. Bioanal. Chem. 380: 637-642. https://doi.org/10.1007/s00216-004-2804-x
  7. Santra, S., P. Zhang, K. Wang, R. Tapec, and W. Tan. 2001. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73: 4988-4993. https://doi.org/10.1021/ac010406+
  8. Gemeinhart, R. A., D. Luo, and W. M. Saltzman. 2005. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol. Prog. 21: 532-537.
  9. Slowing, I. I., J. L. Vivero-Escoto, C. W. Wu, and V. S. Lin. 2008. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60: 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012
  10. Maynard, A. D., R. J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdorster, M. A. Philbert, J. Ryan, A. Seaton, V. Stone, S. S. Tinkle, L. Tran, N. J. Walker, and C. B. Warheit. 2006. Safe handling of nanotechnology. Nature 444: 267-269. https://doi.org/10.1038/444267a
  11. Greenberg, M. I., J. Waksman, and J. Curtis. 2007. Silicosis: a review. Dis. Mon. 53: 394-416. https://doi.org/10.1016/j.disamonth.2007.09.020
  12. Mossman, B. T. and A. Churg. 1998. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care. Med. 157: 1666-1680. https://doi.org/10.1164/ajrccm.157.5.9707141
  13. Huaux, F. 2007. New developments in the understanding of immunology in silicosis. Curr. Opin. Allergy. Clin. Immunol. 7: 168-173. https://doi.org/10.1097/ACI.0b013e32802bf8a5
  14. Yang, E. J., S. Kim, J. S. Kim, and I. H. Choi. 2012. Inflammasome formation and IL-1$\beta$ release by human blood monocytes in response to silver nanoparticles. Biomaterials 33: 6858-6867. https://doi.org/10.1016/j.biomaterials.2012.06.016
  15. Hornung, V., F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L. Rock, K. A. Fitzgerald, and E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9: 847-856. https://doi.org/10.1038/ni.1631
  16. Dostert, C., V. Petrilli, R. Van Bruggen, C. Steele, B. T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320: 674-677. https://doi.org/10.1126/science.1156995
  17. Cassel, S. L., S. C. Eisenbarth, S. S. Iyer, J. J. Sadler, O. R. Colegio, L. A. Tephly, A. B. Carter, P. B. Rothman, R. A. Flavell, and F. S. Sutterwala. 2008. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci. U. S. A. 105: 9035-9040. https://doi.org/10.1073/pnas.0803933105
  18. Morishige, T., Y. Yoshioka, H. Inakura, A. Tanabe, X. Yao, S. Narimatsu, Y. Monobe, T. Imazawa, S. Tsunoda, Y. Tsutsumi, Y. Mukai, N. Okada, and S. Nakagawa. 2010. The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta production, ROS production and endosomal rupture. Biomaterials 31: 6833- 6842. https://doi.org/10.1016/j.biomaterials.2010.05.036
  19. Winter, M., H. D. Beer, V. Hornung, U. Kramer, R. P. Schins, and I. Forster. 2011. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology 5: 326-340. https://doi.org/10.3109/17435390.2010.506957
  20. Yazdi, A. S., G. Guarda, N. Riteau, S. K. Drexler, A. Tardivel, I. Couillin, and J. Tschopp. 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1$\alpha$ and IL-1$\beta$. Proc. Natl. Acad. Sci. U. S. A. 107: 19449-19454. https://doi.org/10.1073/pnas.1008155107
  21. Jin, C. and R. A. Flavell. 2010. Molecular mechanism of NLRP3 inflammasome activation. J. Clin. Immunol. 30: 628-631. https://doi.org/10.1007/s10875-010-9440-3
  22. Netea, M. G., C. A. Nold-Petry, M. F. Nold, L. A. Joosten, B. Opitz, J. H. van der Meer, F. L. van de Veerdonk, G. Ferwerda, B. Heinhuis, I. Devesa, C. J. Funk, R. J. Mason, B. J. Kullberg, A. Rubartelli, J. W. van der Meer, and C. A. Dinarello. 2009. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113: 2324-2335. https://doi.org/10.1182/blood-2008-03-146720
  23. Landmesser, U., S. Dikalov, S. R. Price, L. McCann, T. Fukai, S. M. Holland, W. E. Mitch, and D. G. Harrison. 2003. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111: 1201-1209. https://doi.org/10.1172/JCI200314172
  24. Sevier, C. S. and C. A. Kaiser. 2008. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim. Biophys. Acta 1783: 549-556. https://doi.org/10.1016/j.bbamcr.2007.12.011
  25. Sorbara, M. T. and S. E. Girardin. 2011. Mitochondrial ROS fuel the inflammasome. Cell Res. 21: 558-560. https://doi.org/10.1038/cr.2011.20
  26. Shukla, R. K., A. Kumar, A. K. Pandey, S. S. Singh, and A. Dhawan. 2011. Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J. Biomed. Nanotechnol. 7: 100-101. https://doi.org/10.1166/jbn.2011.1221
  27. Ahmad, J., M. Ahamed, M. J. Akhtar, S. A. Alrokayan, M. A. Siddiqui, J. Musarrat, and A. A. Al-Khedhairy. 2012. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol. Appl. Pharmacol. 259: 160-168. https://doi.org/10.1016/j.taap.2011.12.020
  28. Bulua, A. C., A. Simon, R. Maddipati, M. Pelletier, H. Park, K. Y. Kim, M. N. Sack, D. L. Kastner, and R. W. Siegel. 2011. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208: 519-533. https://doi.org/10.1084/jem.20102049
  29. Arnoult, D., F. Soares, I. Tattoli, and S. E. Girardin. 2011. Mitochondria in innate immunity. EMBO Rep. 12: 901-910. https://doi.org/10.1038/embor.2011.157

Cited by

  1. Pre-Exposure of Mycobacterium tuberculosis -Infected Macrophages to Crystalline Silica Impairs Control of Bacterial Growth by Deregulating the Balance between Apoptosis and Necrosis vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0080971
  2. Immunomodulation of Nanoparticles in Nanomedicine Applications vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/426028
  3. Antitumor activity and systemic effects of PVM/MA-shelled selol nanocapsules in lung adenocarcinoma-bearing mice vol.26, pp.50, 2013, https://doi.org/10.1088/0957-4484/26/50/505101
  4. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives vol.239, pp.3, 2015, https://doi.org/10.1016/j.toxlet.2015.09.025
  5. Efecto inmunomodulador de nanopartículas usadas en nanomedicina vol.29, pp.4, 2013, https://doi.org/10.17533/udea.iatreia.v29n4a06
  6. Silica-based multifunctional nanodelivery systems toward regenerative medicine vol.4, pp.5, 2017, https://doi.org/10.1039/c7mh00017k
  7. Silica nanoparticles induce NLRP3 inflammasome activation in human primary immune cells vol.23, pp.8, 2013, https://doi.org/10.1177/1753425917738331
  8. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art vol.12, pp.6, 2013, https://doi.org/10.3390/pharmaceutics12060510
  9. Mechanisms of immune response to inorganic nanoparticles and their degradation products vol.180, pp.None, 2022, https://doi.org/10.1016/j.addr.2021.114022