DOI QR코드

DOI QR Code

The Effect of Fluid Flow on Power Density in a Horizontal-flow Microbial Fuel Cell

수평 흐름형 미생물 연료전지에서 유체의 흐름 형태에 따른 전력수율 평가

  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon) ;
  • Park, Su-Hee (Jongwoo Corporation) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime University) ;
  • Yoo, Kyu-Seon (Department of Civil and Environmental Engineering, Jeonju University) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Han, Sun-Kee (Department of Environmental Health, Korea National Open University)
  • 이채영 (수원대학교 토목공학과) ;
  • 박수희 (종우코퍼레이션) ;
  • 송영채 (한국해양대학교 한경공학과) ;
  • 유규선 (전주대학교 토목환경공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과) ;
  • 한선기 (한국방송통신대학교 환경보건학과)
  • Published : 2013.03.30

Abstract

This study evaluated the effect of fluid flow on the power density in a horizontal-flow microbial fuel cell (MFC). The maximum power densities in four types of flow induced by different channel types in the anode chamber were investigated. The fluid flow at each channel was analyzed using tracer tests. Results of polarization curves showed that the maximum power densities of case 1, 2, 3 and 4 were 95.7, 129.1, 190.9 and 114.2 mW/m2, respectively. Case 3 with a set of guide walls where flow had an S type-like shape showed the highest power density. Based on the Morrill Dispersion Index (MDI) value of case 4, microbial activity would be enhanced since the reactor allows even distribution of substrate but the overflow occurrence would not guarantee stable performance. Therefore, case 3 could be an effective reactor type for MFC because of high electricity generation and stable performance.

본 연구에서는 수평 흐름 미생물 연료전지에서 유체 흐름이 전력 수율에 미치는 영향을 평가하고자 하였다. 본 연구에서는 산화전극 반응조의 바닥에 아크릴 막대를 설치하여 각각 4가지 유체의 흐름을 유도하였다. 각 반응조 형상에 따라 최대전력수율을 평가하였으며 추적자 실험을 통해 유체 흐름을 해석하였다. 분극 곡선 실험 결과 반응조별 최대 전력수율은 case 1, 2, 3 및 4에서 각각 95.7, 129.1, 190.9 및 $114.2mW/m^2$로 나타났다. 좌우 도류벽을 설치하여 S 형태의 유체 흐름을 유도한 case 3 반응조에서 가장 높은 전력이 생산되는 것으로 나타났다. 추적자 실험의 Morrill 분산지수 값에 따르면 case 4 반응조의 경우 반응조 전체에 기질이 골고루 분포하여 미생물 활성을 높일 수 있을 것으로 나타났다. 그러나 월류 현상에 의해 안정적인 운영을 할 수 없을 것으로 판단된다. 따라서 case 3 반응조의 경우 안정적인 운영 및 높은 전력수율을 얻을 수 있으므로 미생물 연료전지로 이용하기에 효과적일 것으로 나타났다.

Keywords

References

  1. Logan, B. E. Microbial Fuel Cells, John Wiley and Sons, Inc., Hoboken, New Jersey, (2008).
  2. Cheng, K. Y. Cord-Ruwisch, R. and Ho, G. "A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat", Bioelectrochemistry, 74, pp. 227-231. (2009). https://doi.org/10.1016/j.bioelechem.2008.10.002
  3. Ieropoulos, I., Winfield, J. and Greenman, J. "Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells", Bioresource Technology, 101(10), pp. 3520-3525. (2010). https://doi.org/10.1016/j.biortech.2009.12.108
  4. Li, Z., Zhang, X., Zeng, Y. and Lei, L. "Electricity production by an overflow-type wetted-wall microbial fuel cell", Bioresource Technology, 100(9), pp. 2551-2555. (2009). https://doi.org/10.1016/j.biortech.2008.12.018
  5. Liu, H., Ramnarayanan, R. and Logan, B. E., "Production of electricity during wastewater treatment using a single chamber microbial fuel cell", Environmental Science and Technology, 38(7), pp. 2281-2285. (2004). https://doi.org/10.1021/es034923g
  6. Pant, D., Van Bogaert, G., Diels, L. and Vanbroekhoven, K. "A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production", Bioresource Technology, 101(6), pp. 1533-1543. (2010). https://doi.org/10.1016/j.biortech.2009.10.017
  7. Ouitrakul, S., Sriyudthsak, M., Charojrochkul, S. and Kakizono, T. "Impedance analysis of bio-fuel cell electrodes", Biosensors and Bioelectronics, 23(5), pp. 721-727. (2007). https://doi.org/10.1016/j.bios.2007.08.012
  8. Zhang, F., Ge, Z., Grimaud, J., Hurst, J. and He, Z. "Improving electricity production in tubular microbial fuel cells through optimizing the anolyte flow with spiral spacers", Bioresource Technology, 134 pp. 251-256. (2013). https://doi.org/10.1016/j.biortech.2013.02.010
  9. Tembhyrkar, A. R. and Mhaisalkar, V. A., "Study of hydrodynamic behavior of a laboratory scale upflow anaerobic fixed film fixed bed reactor", Journal of Environ. Science & Engg., 48(2), pp.75-80 (2006).