DOI QR코드

DOI QR Code

Mercury Promotes Catecholamines Which Potentiate Mercurial Autoimmunity and Vasodilation: Implications for Inositol 1,4,5-Triphosphate 3-Kinase C Susceptibility in Kawasaki Syndrome

  • Yeter, Deniz (Shawnee, KS) ;
  • Deth, Richard (Department of Pharmaceutical Sciences, Northeastern University) ;
  • Kuo, Ho-Chang (Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine)
  • Published : 2013.09.30

Abstract

Previously, we reviewed biological evidence that mercury could induce autoimmunity and coronary arterial wall relaxation as observed in Kawasaki syndrome (KS) through its effects on calcium signaling, and that inositol 1,4,5-triphosphate 3-kinase C (ITPKC) susceptibility in KS would predispose patients to mercury by increasing $Ca^{2+}$ release. $Hg^{2+}$ sensitizes inositol 1,4,5-triphosphate (IP3) receptors at low doses, which release $Ca^{2+}$ from intracellular stores in the sarcoplasmic reticulum, resulting in delayed, repetitive calcium influx. ITPKC prevents IP3 from triggering IP3 receptors to release calcium by converting IP3 to inositol 1,3,4,5-tetrakisphosphate. Defective IP3 phosphorylation resulting from reduced genetic expressions of ITPKC in KS would promote IP3, which increases $Ca^{2+}$ release. $Hg^{2+}$ increases catecholamine levels through the inhibition of S-adenosylmethionine and subsequently catechol-O-methyltransferase (COMT), while a single nucleotide polymorphism of the COMT gene (rs769224) was recently found to be significantly associated with the development of coronary artery lesions in KS. Accumulation of norepinephrine or epinephrine would potentiate $Hg^{2+}$-induced calcium influx by increasing IP3 production and increasing the permeability of cardiac sarcolemma to $Ca^{2+}$. Norepinephrine and epinephrine also promote the secretion of atrial natriuretic peptide, a potent vasodilator that suppresses the release of vasoconstrictors. Elevated catecholamine levels can induce hypertension and tachycardia, while increased arterial pressure and a rapid heart rate would promote arterial vasodilation and subsequent fatal thromboses, particularly in tandem. Genetic risk factors may explain why only a susceptible subset of children develops KS although mercury exposure from methylmercury in fish or thimerosal in pediatric vaccines is nearly ubiquitous. During the infantile acrodynia epidemic, only 1 in 500 children developed acrodynia whereas mercury exposure was very common due to the use of teething powders. This hypothesis mirrors the leading theory for KS in which a widespread infection only induces KS in susceptible children. Acrodynia can mimic the clinical picture of KS, leading to its inclusion in the differential diagnosis for KS. Catecholamine levels are often elevated in acrodynia and may also play a role in KS. We conclude that KS may be the acute febrile form of acrodynia.

Keywords

References

  1. Adler R, Boxstein D, Schaff P, Kelly D. Metallic mercury vapor poisoning simulating mucocutaneous lymph node syndrome. J Pediatr 1982;101:967-8. https://doi.org/10.1016/S0022-3476(82)80023-1
  2. Mason WH, Takahashi M. Kawasaki syndrome. Clin Infect Dis 1999;28:169-85; quiz 186-7. https://doi.org/10.1086/515133
  3. Nakamura Y, Yashiro M, Uehara R, et al. Epidemiologic features of Kawasaki disease in Japan: results of the 2009-2010 nationwide survey. J Epidemiol 2012;22:216-21. https://doi.org/10.2188/jea.JE20110126
  4. Huang WC, Huang LM, Chang IS, et al. Epidemiologic features of Kawasaki disease in Taiwan, 2003-2006. Pediatrics 2009;123:e401-5. https://doi.org/10.1542/peds.2008-2187
  5. Park YW, Han JW, Hong YM, et al. Epidemiological features of Kawasaki disease in Korea, 2006-2008. Pediatr Int 2011;53:36-9. https://doi.org/10.1111/j.1442-200X.2010.03178.x
  6. Onouchi Y. Genetics of Kawasaki disease: what we know and don't know. Circ J 2012;76:1581-6. https://doi.org/10.1253/circj.CJ-12-0568
  7. Khor CC, Davila S, Breunis WB, et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 2011;43:1241-6. https://doi.org/10.1038/ng.981
  8. Kuo HC, Yang KD, Juo SH, et al. ITPKC single nucleotide polymorphism associated with the Kawasaki disease in a Taiwanese population. PLoS One 2011;6:e17370. https://doi.org/10.1371/journal.pone.0017370
  9. Lin MT, Wang JK, Yeh JI, et al. Clinical Implication of the C Allele of the ITPKC Gene SNP rs28493229 in Kawasaki Disease: Association With Disease Susceptibility and BCG Scar Reactivation. Pediatr Infect Dis J 2011;30:148-52. https://doi.org/10.1097/INF.0b013e3181f43a4e
  10. Lou J, Xu S, Zou L, et al. A functional polymorphism, rs28493229, in ITPKC and risk of Kawasaki disease: an integrated meta-analysis. Mol Biol Rep 2012;39:11137-44. https://doi.org/10.1007/s11033-012-2022-0
  11. Onouchi Y, Gunji T, Burns JC, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 2008;40:35-42. https://doi.org/10.1038/ng.2007.59
  12. Onouchi Y, Suzuki Y, Suzuki H, et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease. Pharmacogenomics J 2013;13:52-9. https://doi.org/10.1038/tpj.2011.45
  13. Chi H, Huang FY, Chen MR, et al. ITPKC gene SNP rs28493229 and Kawasaki disease in Taiwanese children. Hum Mol Genet 2010;19:1147-51. https://doi.org/10.1093/hmg/ddp586
  14. Peng Q, Chen CH, Wu Q, et al. [Association study of a functional SNP rs28493229 of ITPKC gene and Kawasaki disease in a Chinese population]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2011;28:644-8.
  15. Peng Q, Chen C, Zhang Y, et al. Single-nucleotide polymorphism rs2290692 in the 3'UTR of ITPKC associated with susceptibility to Kawasaki disease in a Han Chinese population. Pediatr Cardiol 2012;33:1046-53. https://doi.org/10.1007/s00246-012-0223-x
  16. Tremoulet AH, Pancoast P, Franco A, et al. Calcineurin inhibitor treatment of intravenous immunoglobulin-resistant Kawasaki disease. J Pediatr 2012;161:506-12.e1. https://doi.org/10.1016/j.jpeds.2012.02.048
  17. Bultynck G, Szlufcik K, Kasri NN, et al. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 2004;381(Pt 1):87-96. https://doi.org/10.1042/BJ20040072
  18. Edwards DH, Li Y, Griffith TM. Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization. Arterioscler Thromb Vasc Biol 2008;28:1774-81. https://doi.org/10.1161/ATVBAHA.108.172692
  19. Goth SR, Chu RA, Gregg JP, Cherednichenko G, Pessah IN. Uncoupling of ATP-mediated calcium signaling and dysregulated interleukin-6 secretion in dendritic cells by nanomolar thimerosal. Environ Health Perspect 2006;114:1083-91. https://doi.org/10.1289/ehp.8881
  20. Joseph SK, Nakao SK, Sukumvanich S. Reactivity of free thiol groups in type-I inositol trisphosphate receptors. Biochem J 2006;393(Pt 2): 575-82. https://doi.org/10.1042/BJ20050889
  21. Yeter D, Deth R. ITPKC susceptibility in Kawasaki syndrome as a sensitizing factor for autoimmunity and coronary arterial wall relaxation induced by thimerosal's effects on calcium signaling via IP3. Autoimmun Rev 2012;11:903-8. https://doi.org/10.1016/j.autrev.2012.03.006
  22. Crack P, Cocks T. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery. Br J Pharmacol 1992;107:566-72. https://doi.org/10.1111/j.1476-5381.1992.tb12784.x
  23. Rosenblum WI, Nishimura H, Ellis EF, Nelson GH. The endothelium-dependent effects of thimerosal on mouse pial arterioles in vivo: evidence for control of microvascular events by EDRF as well as prostaglandins. J Cereb Blood Flow Metab 1992;12:703-6. https://doi.org/10.1038/jcbfm.1992.96
  24. Beny JL. Thimerosal hyperpolarizes arterial smooth muscles in an endothelium- dependent manner. Eur J Pharmacol 1990;185:235-8. https://doi.org/10.1016/0014-2999(90)90647-O
  25. Forstermann U, Goppelt-Strube M, Frolich JC, Busse R. Thimerosal, an inhibitor of endothelial acyl-coenzyme A: lysolecithin acyltransferase, stimulates the production of a nonprostanoid endothelium-derived vascular relaxing factor. Adv Prostaglandin Thromboxane Leukot Res 1987;17B:1108-11.
  26. Forstermann U, Burgwitz K, Frolich JC. Thimerosal induces endothelium-dependent vascular smooth muscle relaxations by interacting with thiol groups. Relaxations are likely to be mediated by endothelium-derived relaxing factor (EDRF). Naunyn Schmiedebergs Arch Pharmacol 1986;334:501-7. https://doi.org/10.1007/BF00569393
  27. Beck C, Krafchik B, Traubici J, Jacobson S. Mercury intoxication: it still exists. Pediatr Dermatol 2004;21:254-9. https://doi.org/10.1111/j.0736-8046.2004.21314.x
  28. Brannan EH, Su S, Alverson BK. Elemental mercury poisoning presenting as hypertension in a young child. Pediatr Emerg Care 2012;28:812-4. https://doi.org/10.1097/PEC.0b013e3182628a05
  29. Michaeli-Yossef Y, Berkovitch M, Goldman M. Mercury intoxication in a 2-year-old girl: a diagnostic challenge for the physician. Pediatr Nephrol 2007;22:903-6. https://doi.org/10.1007/s00467-007-0430-5
  30. Torres AD, Rai AN, Hardiek ML. Mercury intoxication and arterial hypertension: report of two patients and review of the literature. Pediatrics 2000;105:E34. https://doi.org/10.1542/peds.105.3.e34
  31. Lim YJ, Jung JW, Jung HJ, Park JE. Two Cases of Kawasaki Disease with Hidden Neuroblastoma. Indian J Pediatr 2012. [Epub ahead of print]
  32. Ohta S, Narita T, Kato H, Taga T, Takeuchi Y. A patient with Kawasaki disease who developed acute urinary retention due to pelvic neuroblastoma. Eur J Pediatr 2002;161:631. https://doi.org/10.1007/s00431-002-1050-5
  33. Lee HJ, Lee MS, Kim JS, et al. The relationship between catechol-O-methyltransferase gene polymorphism and coronary artery abnormality in Kawasaki disease. Korean J Pediatr 2009;52:87-92. https://doi.org/10.3345/kjp.2009.52.1.87
  34. Fukazawa R, Sonobe T, Hamamoto K, et al. Possible synergic effect of angiotensin-I converting enzyme gene insertion/deletion polymorphism and angiotensin-II type-1 receptor 1166A/C gene polymorphism on ischemic heart disease in patients with Kawasaki disease. Pediatr Res 2004;56:597-601. https://doi.org/10.1203/01.PDR.0000139426.16381.C8
  35. Shim YH, Kim HS, Sohn S, Hong YM. Insertion/deletion polymorphism of angiotensin converting enzyme gene in Kawasaki disease. J Korean Med Sci 2006;21:208-11. https://doi.org/10.3346/jkms.2006.21.2.208
  36. Takeuchi K, Yamamoto K, Kataoka S, et al. High incidence of angiotensin I converting enzyme genotype II in Kawasaki disease patients with coronary aneurysm. Eur J Pediatr 1997;156:266-8. https://doi.org/10.1007/s004310050597
  37. Wu SF, Chang JS, Peng CT, Shi YR, Tsai FJ. Polymorphism of angiotensin- 1 converting enzyme gene and Kawasaki disease. Pediatr Cardiol 2004;25:529-33. https://doi.org/10.1007/s00246-003-0662-5
  38. Falcini F, Cerinic MM, Ermini M, et al. Nerve growth factor circulating levels are increased in Kawasaki disease: correlation with disease activity and reduced angiotensin converting enzyme levels. J Rheumatol 1996;23:1798-802.
  39. Falcini F, Generini S, Pignone A, et al. Are Angiotensin Converting Enzyme and von Willebrand factor circulating levels useful surrogate parameters to monitor disease activity in Kawasaki disease? Endothelium 1999;6:209-15. https://doi.org/10.3109/10623329909053411
  40. Matucci-Cerinic M, Jaffa A, Kahaleh B. Angiotensin converting enzyme: an in vivo and in vitro marker of endothelial injury. J Lab Clin Med 1992;120:428-33.
  41. Inoue N, Takai S, Jin D, et al. Effect of angiotensin-converting enzyme inhibitor on matrix metalloproteinase-9 activity in patients with Kawasaki disease. Clin Chim Acta 2010;411:267-9. https://doi.org/10.1016/j.cca.2009.11.020
  42. Kudoh A, Kudoh E, Katagai H, Takazawa T. Norepinephrine-induced inositol 1,4,5-trisphosphate formation in atrial myocytes is regulated by extracellular calcium, protein kinase C, and calmodulin. Jpn Heart J 2003;44:547-56. https://doi.org/10.1536/jhj.44.547
  43. Fujiwara T, Fujiwara H, Takemura G, et al. Expression and distribution of atrial natriuretic polypeptide in the ventricles of children with myocarditis and/or myocardial infarction secondary to Kawasaki disease: immunohistochemical study. Am Heart J 1990;120:612-8. https://doi.org/10.1016/0002-8703(90)90019-T
  44. Bang S, Yu JJ, Han MK, et al. Log-transformed plasma level of brain natriuretic peptide during the acute phase of Kawasaki disease is quantitatively associated with myocardial dysfunction. Korean J Pediatr 2011;54:340-4. https://doi.org/10.3345/kjp.2011.54.8.340
  45. Cho SY, Kim Y, Cha SH, Suh JT, Han MY, Lee HJ. Adjuvant laboratory marker of Kawasaki disease; NT-pro-BNP or hs-CRP? Ann Clin Lab Sci 2011;41:360-3.
  46. Dahdah N, Siles A, Fournier A, et al. Natriuretic peptide as an adjunctive diagnostic test in the acute phase of Kawasaki disease. Pediatr Cardiol 2009;30:810-7. https://doi.org/10.1007/s00246-009-9441-2
  47. Kawamura T, Wago M, Kawaguchi H, Tahara M, Yuge M. Plasma brain natriuretic peptide concentrations in patients with Kawasaki disease. Pediatr Int 2000;42:241-8. https://doi.org/10.1046/j.1442-200x.2000.01225.x
  48. Kishimoto S, Suda K, Teramachi Y, et al. Increased plasma type B natriuretic peptide in the acute phase of Kawasaki disease. Pediatr Int 2011;53:736-41. https://doi.org/10.1111/j.1442-200X.2011.03351.x
  49. Kurotobi S, Kawakami N, Shimizu K, et al. Brain natriuretic peptide as a hormonal marker of ventricular diastolic dysfunction in children with Kawasaki disease. Pediatr Cardiol 2005;26:425-30. https://doi.org/10.1007/s00246-004-0812-4
  50. No SJ, Kim DO, Choi KM, Eun LY. Do predictors of incomplete Kawasaki disease exist for infants? Pediatr Cardiol 2013;34:286-90. https://doi.org/10.1007/s00246-012-0440-3
  51. Sun YP, Wang WD, Zheng XC, Wang JJ, Ma SC, Xu YJ. [Levels of serum brain natriuretic peptide and the correlation to heart function in children with Kawasaki disease]. Zhongguo Dang Dai Er Ke Za Zhi 2010;12:169-71.
  52. Takeuchi D, Saji T, Takatsuki S, Fujiwara M. Abnormal tissue doppler images are associated with elevated plasma brain natriuretic peptide and increased oxidative stress in acute Kawasaki disease. Circ J 2007;71:357-62. https://doi.org/10.1253/circj.71.357
  53. Zhang QY, Du JB, Chen YH, Li WZ. [Change in plasma N-terminal probrain natriuretic peptide in children with Kawasaki disease and its value in clinical practice]. Zhonghua Er Ke Za Zhi 2006;44:886-90.
  54. Mori J, Miura M, Shiro H, Fujioka K, Kohri T, Hasegawa T. Syndrome of inappropriate anti-diuretic hormone in Kawasaki disease. Pediatr Int 2011;53:354-7. https://doi.org/10.1111/j.1442-200X.2010.03264.x
  55. Watanabe T, Abe Y, Sato S, Uehara Y, Ikeno K, Abe T. Hyponatremia in Kawasaki disease. Pediatr Nephrol 2006;21:778-81. https://doi.org/10.1007/s00467-006-0086-6
  56. Nakamura Y, Yashiro M, Uehara R, et al. Use of laboratory data to identify risk factors of giant coronary aneurysms due to Kawasaki disease. Pediatr Int 2004;46:33-8. https://doi.org/10.1111/j.1442-200X.2004.01840.x
  57. Lim GW, Lee M, Kim HS, Hong YM, Sohn S. Hyponatremia and syndrome of inappropriate antidiuretic hormone secretion in kawasaki disease. Korean Circ J 2010;40:507-13. https://doi.org/10.4070/kcj.2010.40.10.507
  58. Ohta M, Ito S. [Hyponatremia and inflammation]. Rinsho Byori 1999;47:408-16.
  59. Cheek DB, Hetzel BS, Hine DC. Evidence of adrenal cortical function in pink disease. Med J Aust 1951;2:6-8.
  60. Cheek DB. Pink disease; infantile acrodynia; a physiological approach; an evaluation of adrenal function and the importance of water and electrolyte metabolism. J Pediatr 1953;42:239-60. https://doi.org/10.1016/S0022-3476(53)80220-9
  61. Hisatome I, Kurata Y, Sasaki N, et al. Block of sodium channels by divalent mercury: role of specific cysteinyl residues in the P-loop region. Biophys J 2000;79:1336-45. https://doi.org/10.1016/S0006-3495(00)76386-7
  62. Kuo HC, Yu HR, Juo SH, et al. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J Hum Genet 2011;56:161-5. https://doi.org/10.1038/jhg.2010.154
  63. Onouchi Y, Ozaki K, Buns JC, et al. Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum Mol Genet 2010;19:2898-906. https://doi.org/10.1093/hmg/ddq176
  64. Huang YC, Lin YJ, Chang JS, et al. Single nucleotide polymorphism rs2229634 in the ITPR3 gene is associated with the risk of developing coronary artery aneurysm in children with Kawasaki disease. Int J Immunogenet 2010;37:439-43. https://doi.org/10.1111/j.1744-313X.2010.00943.x
  65. Kuo HC, Lin YJ, Juo SH, et al. Lack of association between ORAI1/CRACM1 gene polymorphisms and Kawasaki disease in the Taiwanese children. J Clin Immunol 2011;31:650-5. https://doi.org/10.1007/s10875-011-9524-8
  66. Braun A, Varga-Szabo D, Kleinschnitz C, et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 2009;113:2056-63. https://doi.org/10.1182/blood-2008-07-171611
  67. McCarl CA, Khalil S, Ma J, et al. Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection. J Immunol 2010;185:5845-58. https://doi.org/10.4049/jimmunol.1001796
  68. Kawasaki T, Ueyama T, Lange I, Feske S, Saito N. Protein kinase C-induced phosphorylation of Orai1 regulates the intracellular Ca2+ level via the store-operated Ca2+ channel. J Biol Chem 2010;285:25720-30. https://doi.org/10.1074/jbc.M109.022996
  69. Caballero Mora FJ, Alvarez-Coca Gonzalez J, Alonso Martin B, Martinez Perez J. [Is the determination of procalcitonin useful in Kawasaki disease?]. An Pediatr (Barc) 2009;71:371-2. https://doi.org/10.1016/j.anpedi.2009.06.027
  70. Okada Y, Minakami H, Tomomasa T, et al. Serum procalcitonin concentration in patients with Kawasaki disease. J Infect 2004;48:199-205. https://doi.org/10.1016/j.jinf.2003.08.002
  71. Yoshikawa H, Nomura Y, Masuda K, et al. Serum procalcitonin value is useful for predicting severity of Kawasaki disease. Pediatr Infect Dis J 2012;31:523-5. https://doi.org/10.1097/INF.0b013e3182463879
  72. Catalano-Pons C, André MC, Chalumeau M, Guerin S, Gendrel D. Lack of value of procalcitonin for prediction of coronary aneurysms in Kawasaki disease. Pediatr Infect Dis J 2007;26:179-80. https://doi.org/10.1097/01.inf.0000250686.70233.8e
  73. Chakrabartty S, Apong S. Procalcitonin estimation in Kawasaki disease. Indian Pediatr 2009;46:648.
  74. Sokolow S, Luu SH, Headley AJ, et al. High levels of synaptosomal Na(+)-Ca(2+) exchangers (NCX1, NCX2, NCX3) co-localized with amyloid-beta in human cerebral cortex affected by Alzheimer's disease. Cell Calcium 2011;49:208-16. https://doi.org/10.1016/j.ceca.2010.12.008
  75. Staiano RI, Granata F, Secondo A, et al. Human macrophages and monocytes express functional Na(+)/Ca (2+) exchangers 1 and 3. Adv Exp Med Biol 2013;961:317-26. https://doi.org/10.1007/978-1-4614-4756-6_27
  76. Dixit M, Kim S, Matthews GF, et al. Structural arrangement of the intracellular Ca2+ binding domains of the cardiac Na+/Ca2+ exchanger (NCX1.1): effects of Ca2+ binding. J Biol Chem 2013;288:4194-207. https://doi.org/10.1074/jbc.M112.423293
  77. Denny MF, Atchison WD. Mercurial-induced alterations in neuronal divalent cation homeostasis. Neurotoxicology 1996;17:47-61.
  78. Hare MF, Atchison WD. Methylmercury mobilizes Ca++ from intracellular stores sensitive to inositol 1,4,5-trisphosphate in NG108-15 cells. J Pharmacol Exp Ther 1995;272:1016-23.
  79. Kawasaki T. Letter to the editor. Pediatrics 1975;56:336-7.
  80. Orlowski JP, Mercer RD. Urine mercury levels in Kawasaki disease. Pediatrics 1980;66:633-6.
  81. Aschner M, Aschner JL. Mucocutaneous lymph node syndrome: is there a relationship to mercury exposure? Am J Dis Child 1989;143:1133-4.
  82. Mutter J. Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. J Occup Med Toxicol 2011;6:2. https://doi.org/10.1186/1745-6673-6-2
  83. Deth RC. Congressional testimony before the U.S. House of Representatives. Subcommittee on Human Rights and Wellness;2004.
  84. United Nations Environment Program. Global Mercury Assessment Report. Geneva: United Nations;2002.
  85. Stoiber T, Bonacker D, Bohm KJ, et al. Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutat Res 2004;563:97-106. https://doi.org/10.1016/j.mrgentox.2004.06.009
  86. Thier R, Bonacker D, Stoiber T, et al. Interaction of metal salts with cytoskeletal motor protein systems. Toxicol Lett 2003;140-141:75-81. https://doi.org/10.1016/S0378-4274(02)00502-7
  87. Martindale W. The extra pharmacopoeia, vol 2. Pharmaceutical Society of Great Britain. London: Pharmaceutical Press;1982.

Cited by

  1. Glyphosate Use Predicts ADHD Hospital Discharges in the Healthcare Cost and Utilization Project Net (HCUPnet): A Two-Way Fixed-Effects Analysis vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0133525
  2. Arsenic, cadmium, and mercury-induced hypertension: mechanisms and epidemiological findings vol.21, pp.2, 2018, https://doi.org/10.1080/10937404.2018.1432025
  3. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer’s Disease vol.16, pp.24, 2013, https://doi.org/10.3390/ijerph16245152