DOI QR코드

DOI QR Code

The effect of guided flapless implant procedure on heat generation from implant drilling

수술가이드를 이용한 무피판 임플란트 술식에서 임플란트 드릴링이 열발생에 미치는 효과

  • Yoo, Je-Hyeon (Department of Medicine, Graduate School of Yonsei University) ;
  • Jeong, Seung-Mi (Department of Dentistry, Yonsei University Wonju College of Medicine) ;
  • Choi, Byung-Ho (Department of Dentistry, Yonsei University Wonju College of Medicine) ;
  • Joo, Sang-Don (Ye Dental Clinic)
  • 유지현 (연세대학교 대학원 의학과) ;
  • 정승미 (연세대학교 원주의과대학 원주기독병원 치과학교실) ;
  • 최병호 (연세대학교 원주의과대학 원주기독병원 치과학교실) ;
  • 주상돈 (대구 예치과)
  • Received : 2012.10.04
  • Accepted : 2012.11.29
  • Published : 2013.01.31

Abstract

Purpose: The aim of this study was to evaluate the heat generation in bone in vitro during the guided flapless drilling procedure and the effect of drilling methods on the heat generation. Materials and methods: A model that has missing the first and second mandibular molars bilaterally was used. In group A, classical flap implant surgery was performed. In group B, flapless implant surgery using surgical guide was performed. In group C, flapless implant surgery using surgical guide without up-and-down pumping motion was performed. Temperature was measured with k-type thermocouple and a real-time digital thermometer. The thermocouples were placed at 0.5 mm away from the osteotomy area at the depths of 3 mm and 6 mm. The measured values were evaluated with independent t-test. Results: The mean temperature generated was $27.2^{\circ}C$ ($SD{\pm}2.1^{\circ}C$) and $27.5^{\circ}C$ ($SD{\pm}2.3^{\circ}C$) for groups A and B, respectively. These differences were not statistically significant. In group C, the mean temperature was $37.0^{\circ}C$ ($SD{\pm}3.4^{\circ}C$). There were statistically significant differences between groups B and C with respect to the mean temperature. Conclusion: These findings suggest that guided flapless drilling with up-and-down pumping motion may not significantly increase the bone temperature.

연구 목적: 본 연구에서는 수술가이드를 이용한 무피판 임플란트 술식에서 임플란트 드릴링이 열발생에 미치는 효과를 측정하였으며 드릴링 방법에 따른 온도 차이를 측정하고자 하였다. 연구 재료 및 방법: 하악 양측 제 1 대구치와 제 2 대구치가 없는 실험 모델에서 피판을 거상하는 임플란트 수술(실험A군)과 수술가이드를 이용한 무피판 임플란트 수술(실험B군), 그리고 핸드피스의 상하 수직 움직임을 제한한 후 수술가이드를 이용하여 무피판 임플란트 수술(실험C군)을 각각 진행하여 온도 측정을 하였다. 임플란트 드릴링 시 온도 측정은 thermocouple과 열전식 온도 기록계(Yokogawa, Tokyo, Japan)를 이용하여 측정하였다. 온도 측정 위치는 최종 임플란트 드릴(직경 3.8 mm)의 경계부에서 0.5 mm 떨어진 곳에서 3 mm 깊이(설측)와 6 mm 깊이(협측)로 하였다. 측정된 온도 값을 이용하여 종속변수인 온도가 정규분포 하는지를 검정하기 위해 Kolmogorov-Smirnov test를 거쳐 확인한 후 세 수술 방법 간의 평균 온도 차이를 검정하기 위해 independent t-test로 분석하였다. 결과: 피판을 거상하고 드릴링을 한 수술군(실험A군)에서 평균 온도는 $27.2^{\circ}C$($SD{\pm}2.1^{\circ}C$)를 보였고 피판을 거상하지 않고 드릴링을 한 수술군(실험B군)에서 평균 $27.5^{\circ}C$($SD{\pm}2.3^{\circ}C$)를 나타냈다. 이들 두 수술 방법 간 온도비교에서는 통계학적으로 유의한 차이를 보이지 않았다. 수술가이드를 이용하여 무피판 수술 시 상하 수직 움직임(upand-down pumping motion)이 없이 드릴링을 시행한 수술군(실험C군)에서 평균온도는 $37.0^{\circ}C$($SD{\pm}3.4^{\circ}C$)을 보였다. 이를 상하 수직 움직임으로 드릴링을 한 무피판 임플란트 수술군(실험B군)과 비교 시 통계학적으로 유의한 온도 차이를 보였다. 결론: 수술가이드를 이용하여 무피판 임플란트 수술 시 핸드피스를 상하 수직 움직임으로 드릴링을 시행하면 피판을 거상하여 수술할 때와 온도차이가 발생하지 않으나, 상하 수직 움직임 없이 드릴링을 시행하면 드릴링 시 높은 온도 상승을 보인다.

Keywords

References

  1. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Halle'n O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
  2. Misch K, Wang HL. Implant surgery complications: etiology and treatment. Implant Dent 2008;17:159-68. https://doi.org/10.1097/ID.0b013e3181752f61
  3. McDermott NE, Chuang SK, Woo VV, Dodson TB. Complications of dental implants: identification, frequency, and associated risk factors. Int J Oral Maxillofac Implants 2003;18:848-55.
  4. Park SH, Wang HL. Implant reversible complications: classification and treatments. Implant Dent 2005;14:211-20.
  5. Greenstein G, Cavallaro J, Romanos G, Tarnow D. Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: a review. J Periodontol 2008;79:1317-29. https://doi.org/10.1902/jop.2008.070067
  6. Rahman AU, Rehman TU, Qureshi I, Hashim M, Warris N, Mateen S. Pre surgical perception of pain, post surgical pain and its management for patients undergoing dental implant therapy. J Pak Dent Assoc 2012;21:5-11.
  7. Jaffin RA, Kumar A, Berman CL. Immediate loading of implants in partially and fully edentulous jaws: a series of 27 case reports. J Periodontol 2000;71:833-8. https://doi.org/10.1902/jop.2000.71.5.833
  8. Canullo L, Fedele GR, Iannello G, Jepsen S. Platform switching and marginal bone-level alterations: the results of a randomizedcontrolled trial. Clin Oral Implants Res 2010;21:115-21. https://doi.org/10.1111/j.1600-0501.2009.01867.x
  9. Cannizzaro G, Leone M, Consolo U, Ferri V, Esposito M. Immediate functional loading of implants placed with flapless surgery versus conventional implants in partially edentulous patients: a 3-year randomized controlled clinical trial. Int J Oral Maxillofac Implants 2008;23:867-75.
  10. Van der Zee E, Oosterveld P, Van Waas MA. Effect of GBR and fixture installation on gingiva and bone levels at adjacent teeth. Clin Oral Implants Res 2004;15:62-5. https://doi.org/10.1111/j.1600-0501.2004.01005.x
  11. Brodala N. Flapless surgery and its effect on dental implant outcomes. Int J Oral Maxillofac Implants 2009;24:118-25.
  12. Jeong SM, Choi BH, Kim J, Xuan F, Lee DH, Mo DY, Lee CU. A 1-year prospective clinical study of soft tissue conditions and marginal bone changes around dental implants after flapless implant surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:41-6. https://doi.org/10.1016/j.tripleo.2010.03.037
  13. Becker W, Wikesjo UM, Sennerby L, Qahash M, Hujoel P, Goldstein M, Turkyilmaz I. Histologic evaluation of implants following flapless and flapped surgery: a study in canines. J Periodontol 2006;77:1717-22. https://doi.org/10.1902/jop.2006.060090
  14. Azari A, Nikzad S. Flapless implant surgery: review of the literature and report of 2 cases with computer-guided surgical approach. J Oral Maxillofac Surg 2008;66:1015-21. https://doi.org/10.1016/j.joms.2007.12.010
  15. Sudbrink SD. Computer-guided implant placement with immediate provisionalization: a case report. J Oral Maxillofac Surg 2005; 63:771-4. https://doi.org/10.1016/j.joms.2005.02.011
  16. Brisman DL. The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants 1996;11:35-7.
  17. Kerawala CJ, Martin IC, Allan W, Williams ED. The effects of operator technique and bur design on temperature during osseous preparation for osteosynthesis self-tapping screws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:145-50. https://doi.org/10.1016/S1079-2104(99)70108-3
  18. Harris BH, Kohles SS. Effects of mechanical and thermal fatigue on dental drill performance. Int J Oral Maxillofac Implants 2001;16:819-26.
  19. Sener BC, Dergin G, Gursoy B, Kelesoglu E, Slih I. Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implants Res 2009;20:294-8. https://doi.org/10.1111/j.1600-0501.2008.01643.x
  20. Ercoli C, Funkenbusch PD, Lee HJ, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants 2004;19:335-49.
  21. Branemark PI, Zarb GA, Albrektsson T. Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago, IL, Quintessence pub., 1985, p. 129-43.
  22. Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM. Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg 2006;64:265-9. https://doi.org/10.1016/j.joms.2005.10.011
  23. Collins DH. Structural changes around nails and screws in human bones. J Pathol 1953;65:109-21. https://doi.org/10.1002/path.1700650112
  24. Moss RW. Histopathologic reaction of bone to surgical cutting. Oral Surg Oral Med Oral Pathol 1964;17:405-14. https://doi.org/10.1016/0030-4220(64)90515-8
  25. Lavelle C, Wedgwood D. Effect of internal irrigation on frictional heat generated from bone drilling. J Oral Surg 1980;38:499-503.
  26. Matthews LS, Hirsch C. Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am 1972;54:297-308.
  27. Ludewig R. Temperaturmessungen beim Knochensagen (thesis). Gissen: Univ. of Gissen, 1972.
  28. Rhinelander FW, Nelson CL, Stewart RD, Stewart CL. Experimental reaming of the proximal femur and acrylic cement implantation: vascular and histologic effects. Clin Orthop Relat Res 1979;(141):74-89.
  29. Berman AT, Reid JS, Yanicko DR Jr, Sih GC, Zimmerman MR. Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin Orthop Relat Res 1984;(186):284-92.
  30. Eriksson A, Albrektsson T, Grane B, McQueen D. Thermal injury to bone. A vital-microscopic description of heat effects. Int J Oral Surg 1982;11:115-21. https://doi.org/10.1016/S0300-9785(82)80020-3
  31. Eriksson AR, Albrektsson T. Temperature threshold levels for heatinduced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-7. https://doi.org/10.1016/0022-3913(83)90174-9
  32. Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg 1984;42:705-11. https://doi.org/10.1016/0278-2391(84)90417-8
  33. Misir AF, Sumer M, Yenisey M, Ergioglu E. Effect of surgical drill guide on heat generated from implant drilling. J Oral Maxillofac Surg 2009;67:2663-8. https://doi.org/10.1016/j.joms.2009.07.056
  34. Rogers HJ, Weidmann SM, Parkinson A. Studies on the skeletal tissues. II. The collagen content of bones from rabbits, oxen and humans. Biochem J 1952;50:537-42. https://doi.org/10.1042/bj0500537
  35. Darzi A, Mackay S. Recent advances in minimal access surgery. BMJ 2002;324:31-4.
  36. Esposito M, Grusovin MG, Maghaireh H, Coulthard P, Worthington HV. Interventions for replacing missing teeth: management of soft tissues for dental implants. Cochrane Database Syst Rev 2007;(3):CD006697.
  37. Holst S, Blatz MB, Eitner S. Precision for computer-guided implant placement: using 3D planning software and fixed intraoral reference points. J Oral Maxillofac Surg 2007;65:393-9. https://doi.org/10.1016/j.joms.2006.10.050
  38. Haider R, Watzek G, Plenk H. Effects of drill cooling and bone structure on IMZ implant fixation. Int J Oral Maxillofac Implants 1993;8:83-91.
  39. Benington IC, Biagioni PA, Crossey PJ, Hussey DL, Sheridan S, Lamey PJ. Temperature changes in bovine mandibular bone during implant site preparation: an assessment using infra-red thermography. J Dent 1996;24:263-7. https://doi.org/10.1016/0300-5712(95)00072-0
  40. Misch CE. Density of Bone: Effects on surgical approach and healing, In: Contemporary Implant Dentistry. 3rd ed. St. Louis, MO: Mosby; 2008, p. 645-67.
  41. Yacker MJ, Klein M. The effect of irrigation on osteotomy depth and bur diameter. Int J Oral Maxillofac Implants 1996;11: 634-8.
  42. Vachon RL, Walker FJ, Walder DF, Nex GH. In vivo determination of thermal conductivity of bone using the thermal comparator technique. In: Jacobson B (ed). Digest of the Seventh International Conference of Medical and Biological Engineering. Stockholm; 1967. p. 502.
  43. Watanabe F, Tawada Y, Komatsu S, Hata Y. Heat distribution in bone during preparation of implant sites: heat analysis by realtime thermography. Int J Oral Maxillofac Implants. 1992;7:212-9.
  44. Eriksson RA, Adell R. Temperatures during drilling for the placement of implants using the osseointegration technique. J Oral Maxillofac Surg 1986;44:4-7. https://doi.org/10.1016/0278-2391(86)90006-6

Cited by

  1. 임플란트 시술용 드릴의 가공 성능 평가에 관한 연구 vol.13, pp.2, 2013, https://doi.org/10.14775/ksmpe.2014.13.2.049