DOI QR코드

DOI QR Code

Feeding Stimulants and Feeding Preference of Haliotis discus Reeve (Jeju Island) to Marine Algae

제주도산 까막전복의 해조류 섭식선호도와 섭식자극물질

  • Lee, Joon-Baek (Department of Earth and Marine Sciences, College of Ocean Science, Jeju National University) ;
  • Kim, Bo-Young (Park Planning & Concession Division, Park Management Department, Korea National Park Service)
  • 이준백 (제주대학교 해양과학대학 지구해양과학과) ;
  • 김보영 (국립공원관리공단 공원계획부)
  • Received : 2013.08.07
  • Accepted : 2013.11.26
  • Published : 2013.12.31

Abstract

Haliotis discus, a useful abalone of herbivorous gastropod, shows feeding preference to marine algae depending upon their growth stage and recognition of taste. This study was carried out to investigate this abalone's algal preferences and the presence of feeding stimulants. In single-choice experiments the small (S) group generally preferred Ulva pertusa (Chlorophyta), whereas the medium (M) and large (L) group preferred both Laminaria japonica (Phaeophyta) and Undaria pinnatifida (Phaeophyta). In multi-choice experiments using 4 algal species of L. japonica, U. pertusa, U. pinnatifida and Ecklonia cava (Phaeophyta), the results were same as in the single-choice experiments; the S group preferred U. pertusa the most, while the M and L group preferred both U. pinnatifida and L. japonica. However E. cava was not preferred by any groups. In order to examine the presence of feeding stimulant, chemical compounds from algae used as feed were isolated and identified. The abalone responded to water soluble matters of L. japonica, U. pinnatifida and U. pertusa, but those of E. cava and Sargassum sagamianum (Phaeophyta) were not attractive to them. In feeding stimulant experiments using fat soluble matters, the S group preferred the fat soluble matter of U. pertusa the most, while the M group and the L group preferred those of U. pertusa and U. pinnatifida, and those of L. japonica, respectively. However the fat soluble matter of S. sagamianum was not attractive to the abalone. The results of feeding stimulant experiments were same as those of single-choice or multi-choice experiments, which showed that compound lipids in fat soluble matter might act as feeding-stimulant.

Keywords

References

  1. Arrontes J. 1990. Diet, food preference and digestive efficiency in intertidal isopods inhabiting macroalgae. J. Exp. Mar. Biol. Ecol. 139:231-249. https://doi.org/10.1016/0022-0981(90)90149-7
  2. Daume S, S Brand-Garder and WJ Woelkerling. 1999. Preferential settlement of abalone larvae: diatom films vs. nongeniculate coralline red algae. Aquaculture 174:243-254. https://doi.org/10.1016/S0044-8486(99)00003-4
  3. Dubois M, KA Gilles, JK Hamilton, PA Rebers and F Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  4. Faulkner DJ. 1992. Marine natural products. Nat. Prod. Rep. 9:323-364. https://doi.org/10.1039/np9920900323
  5. Fenical W. 1982. Natural products chemistry in the marine environment. Science 215:923-928. https://doi.org/10.1126/science.215.4535.923
  6. Fleming AE. 1995. Growth, intake, feed conversion efficiency and chemosensory preference of the Australian abalone, Haliotisrubra. Aquaculture 132:297-311. https://doi.org/10.1016/0044-8486(94)00347-Q
  7. Folch JM, GH Lees and S Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  8. Gribble GW. 1994. Natural organohalogens. J. Chem. Educ. 71:907-911. https://doi.org/10.1021/ed071p907
  9. Han SJ, JE Lee, BG Kim, EO Kim and KY Yang. 1986. On the food values of nine kinds of marine algae on the young abalone Haliotis discus Reeve. Bull. Nat. Fish. Res. Dev. Inst. Korea 39:127-133. (in Korean)
  10. Harada K, T Miyasaki, S Kawashima and H Shiota. 1996. Studies on the feeding attractants for fishes and shellfishes. XXIV. Probable feeding attractants in allspice Pimenta officinalis for black abalone Haliotis discus. Aquaculture 140:99-108. https://doi.org/10.1016/0044-8486(95)01186-2
  11. Hay ME. 1981. The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62:739-750. https://doi.org/10.2307/1937742
  12. Hay ME. 1996. Marine chemical ecology: what's known and what's next? J. Exp. Mar. Biol. Ecol. 200:103-134. https://doi.org/10.1016/S0022-0981(96)02659-7
  13. Ishii T, Y Suzuki, M Matsuba and T Koyanagi. 1980. Determination of trace elements in marine organisms - III Distribution of trace elements in marine algae. Bull. Japan. Soc. Sci. Fish. 46:185-189. (in Japanese) https://doi.org/10.2331/suisan.46.185
  14. Ishikawa M, G Izawa and T Omori. 1987. Annual variations of elemental quantities in brown sea algae hiziki Hizikia fusiforme. Nippon Suisan Gakkaishi 53:853-859. https://doi.org/10.2331/suisan.53.853
  15. Jeong SC, YJ Jee and PW Son. 1994a. Indoor tank culture of the abalone Haliotis discus hannai I. Effects of tank shape and stocking density on the growth of young abalone. J. Aquacul. 7:77-87. (in Korean)
  16. Jeong SC, YJ Jee and PW Son. 1994b. Indoor tank culture of the abalone Haliotis discus hannai II. Effects of diets on the growth of young abalone. J. Aquacul. 7:77-87. (in Korean)
  17. Ji YJ, SK Yoo, S Rho and SH Kim. 1988. The stocking density and growth of young abalone Haliotis discus hannai Ino cultured in the Hanging net cage. Bull. Nat. Fish. Res. Dev. Inst. Korea 42:59-69. (in Korean)
  18. John DM, SJ Hawkins and JH Price. 1992. Plant-Animal Interactions in the Marine Benthos. Oxford University Press, New York, 570 p.
  19. Kawamura T, H Takami, RD Roberts and Y Yamashita. 2001. Radula development in abalone Haliotis discus hannai from larva to adult in relation to feeding transitions. Fish. Sci. 67:596-605. https://doi.org/10.1046/j.1444-2906.2001.00295.x
  20. Kim JH and RE DeWreede. 1996. Distribution and feeding preference of a high intertidal Littorinid. Bot. Mar. 39:561-569.
  21. Kitagawa I and N Fusetani. 1989. Chemical Signal of Marine Organisms. Kodansha, Tokyo, Japan 204 p.
  22. Lee YP and SY Kang. 2001. A catalogue of the seaweeds in Korea. Jeju National University Press, Jeju, 662 pp. (in Korean)
  23. Lee YP. 2008. Marine algae of Jeju. Academy Press, Seoul, 477 pp. (in Korean)
  24. Littler MM and DS Littler. 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 116:25-44. https://doi.org/10.1086/283610
  25. Lowry OH, NJ Rosenbrough, AL Farr and RJ Randall. 1951. Protein measurement with the Folins phenol reagent. J. Biol. Chem. 193:265-275.
  26. McConnell OJ and W Fenical. 1977. Halogen chemistry of the red alga Asparagopsis. Phytochemistry 16:367-374. https://doi.org/10.1016/0031-9422(77)80067-8
  27. Nishide E, Y Kinoshita, H Anzai and N Uchida. 1988. Distribution of hot-water extractable material, water-soluble alginate and alkali-soluble alginate in different parts of Undaria pinnatifida. Nippon Suisan Gakkaishi 54:1619-1622. (in Japanese) https://doi.org/10.2331/suisan.54.1619
  28. Norton TA, SJ Hawkins, NL Manley, GA Williams and DC Watson. 1990. Scraping a living: a review of littorinid grazing. Hydrobiologia 193:117-138. https://doi.org/10.1007/BF00028071
  29. Ochiai Y, T Katsuragi and K Hashimoto. 1987. Proteins in three seaweeds, "Aosa" Ulva lactuca, "Arame" Eisenia bicyclis, and "Makusa" Gelidium amansii. Nippon Suisan Gakkaishi 53:1051-1055. https://doi.org/10.2331/suisan.53.1051
  30. Paine RT and RL Vadas. 1969. The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations. Limnol. Oceanogr. 14:710-719. https://doi.org/10.4319/lo.1969.14.5.0710
  31. Pyen CK. 1970. Studies on the propagation of abalone. Bull. Korea Fish. Soc. 3:177-186. (in Korean)
  32. Rho S, CK Park and CK Pyen. 1974. Studies on the propagation of the abalones (I) The spring spawning of Haliotis discus hannai INO in the adjacent seas of Yeosu. Bull. Nat. Fish. Res. Dev. Inst. Korea 13:77-92. (in Korean)
  33. Son MH, JU Lee, MW Park, HK Lim, DJ Kim and HG Hwang. 2009. State of optimal rearing technique on the abalone (Haliotis discus hannai) juvenile. Kor. J. Fish. Aquat. Sci. 42:621-627. (in Korean)
  34. Steneck RS and L Watling. 1982. Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Mar. Biol. 68:299-319. https://doi.org/10.1007/BF00409596
  35. Steneck RS. 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Ann. Rev. Ecol. Syst. 17:273-303. https://doi.org/10.1146/annurev.es.17.110186.001421
  36. Taniguchi K, J Yamada, K Kurata and M Suzuki. 1993. Feedingdeterrents from the brown alga Dictyopteris undulate against the abalone Haliotis discus hannai. Nippon Suisan Gakkaishi 59:339-343. (in Japanese) https://doi.org/10.2331/suisan.59.339
  37. Taniguchi K, K Kurata and M Suzuki. 1991. Feeding-deterrent effect of phlorotannins from the brown alga Ecklonia stolonifera against the abalone Haliotis discus hannai. Nippon Suisan Gakkaishi 57:2065-2071. (in Japanese) https://doi.org/10.2331/suisan.57.2065
  38. Taniguchi K, K Kurata and M Suzuki. 1992a. Feeding-deterrent activity of some laminariaceos brown algae against the ezo abalone. Nippon Suisan Gakkaishi 58:577-581. (in Japanese) https://doi.org/10.2331/suisan.58.577
  39. Taniguchi K, K Kurata and M Suzuki. 1992b. Feeding-deterrent activity of diterpenes from the brown alga Dilophus okamurai against the abalone Haliotis discus hannai. Nippon Suisan Gakkaishi 58:1931-1936. (in Japanese) https://doi.org/10.2331/suisan.58.1931
  40. Taniguchi K, Y Akimoto, K Kurata and M Suzuki. 1992c. Chemical defense mechanism of the brown alga Eiseniabi cyclis against marine herbivores. Nippon Suisan Gakkaishi 58:571-575. (in Japanese) https://doi.org/10.2331/suisan.58.571
  41. Uchida K, G Kawamura, T Kasedou, T Onoue and V Archdale. 2010. Chemoreception in the abalone Haliotis discus hannai (Ino) and its role in inducing feeding. Nippon Suisan Gakkaishi 76:185-191. (in Japanese) https://doi.org/10.2331/suisan.76.185
  42. Watson DC and TA Norton. 1985. Dietary preferences of the common periwinkle, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 88:193-211. https://doi.org/10.1016/0022-0981(85)90230-8
  43. Worm B, HK Lotze, C Bostrom, R Engkvist, V Labanauskas and U Sommer. 1999. Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Mar. Ecol. Prog. Ser. 185:309-314. https://doi.org/10.3354/meps185309