Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time

관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향

  • Park, Jin Yong (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Choi, Min Jee (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Ma, Jun Gyu (Department of Environmental Sciences & Biotechnology, Hallym University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 최민지 (한림대학교 환경생명공학과) ;
  • 마정규 (한림대학교 환경생명공학과)
  • Received : 2013.04.17
  • Accepted : 2013.06.19
  • Published : 2013.06.30

Abstract

The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.

관형 알루미나 정밀여과와 이산화티타늄 광촉매 코팅 PP (polypropylene) 구의 혼성공정에서 질소 역세척 주기(FT)와 시간(BT)의 영향을 막오염에 의한 저항($R_f$) 및 투과선속(J), 총여과부피($V_T$)의 관점에서 광촉매 첨가 PES (polyethersulfone)구를 사용한 기존 결과와 비교하였다. 일반적인 역세척 방법인 공기가 아닌 질소로 역세척을 한 이유는 공기에 포함된 산소에 의해 수질분석에 영향을 줄 가능성을 최소화하기 위한 것이다. FT가 짧아질수록 $R_f$는 감소하고, J와 $V_T$는 증가하였다. 용존유기물의 평균 처리효율은 82.0%로 PES 구 결과의 78.0% 보다 높았다. 이러한 결과는 광촉매 코팅 PP 구가 광촉매 첨가 PES 구 보다 효과적으로 용존유기물을 제거한다는 것을 의미한다. BT가 길어질수록 최종 $R_f$는 감소하고 최종 J는 증가하였지만, $V_T$는 BT 15초에서 최대값을 보였다. 탁도의 평균 처리효율은 BT 변화에 따라 특별한 경향을 보이지 않았다. BT가 6초에서 30초로 증가함에 따라 용존유기물의 처리효율은 11.8% 증가하여, PES 구의 결과보다 다소 크게 증가하였다.

Keywords

References

  1. H. Zhang, X. Quan, S. Chen, H, Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_{2}$ photo catalysts on super-hydrophovic porous teflon membrane by an ion assisted deposition method and their self-cleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003). https://doi.org/10.1016/S0168-583X(03)00895-4
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Disserationm, Yeungnam Univ., Daegu, Korea (2004).
  5. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  6. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  7. T. H. Bae and T. M. Tak, "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 49, 1 (2005).
  8. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  9. I. R. Bellobono and B. Barni, F. Gianturco, "Preindustrial experience in advanced oxidation and integral photodegradation of organics in potable waters and wastewaters by PHOTHOPERMTM membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995). https://doi.org/10.1016/0376-7388(94)00273-2
  10. R. Molinari, M. Mungari, E. Drioli, A. D. Paola, V. Loddo, L. Palmisano, and M. Schiavello, "Study on a photocatalytic membrane reactor for water purification", Catal. Today, 55, 71 (2000). https://doi.org/10.1016/S0920-5861(99)00227-8
  11. R. Molinari, C. Grande, E. Drioli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catal. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  12. R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", J. Membr. Sci., 206, 399 (2002). https://doi.org/10.1016/S0376-7388(01)00785-2
  13. J. Kleine, K. V. Peinemann, C. Schuster, and H. J. Warnecke, "Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltation membranes", Chem. Eng. Sci., 57, 1661 (2002). https://doi.org/10.1016/S0009-2509(02)00043-X
  14. K. Karakulski, W.A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Sep. Pur. Tech., 14, 163 (1998). https://doi.org/10.1016/S1383-5866(98)00071-9
  15. W. Xi and S. U. Geissen, "Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration", Wat. Res., 35, 1256 (2001). https://doi.org/10.1016/S0043-1354(00)00378-X
  16. K. Azrague, E. Puech-Costes, P. Aimar, M.T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  17. M. Pidou, S.A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009). https://doi.org/10.1016/j.watres.2009.05.030
  18. K.-J. Hwang and Y.-J. Wu, "Flux enhancement and cake formation in air-sparged cross-flow microfiltration", Chem. Eng. J., 139, 296 (2008). https://doi.org/10.1016/j.cej.2007.08.006
  19. K.-J. Hwang and C.-. Hsu, "Effect of gas-liquid flow pattern on air-sparged cross-flow microfiltration of yeast suspension", Chem. Eng. J., 151, 160 (2009). https://doi.org/10.1016/j.cej.2009.02.009
  20. M. Mayer, R. Braun, and W. Fuchs, "Comparison of various aeration devices for air sparging in crossflow membrane filtration", J. Membr. Sci., 277, 258 (2006). https://doi.org/10.1016/j.memsci.2005.10.035
  21. S. T. Hong and J. Y. Park, "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: effect of nitrogen backflushing period and time", Membrane Journal, 23, 70 (2013).
  22. M. Cheryan, "Ultrafiltraion Handbook", pp. 89-93, Technomic Pub. Co., Pennsylvania (1984).
  23. J. Y. Park and S. B. Sim, "Advanced water treatment of high turbidity source by hybrid process of photocatalyst and alumina microfiltration: effect of organic matters in nitrogen back-flushing", Membrane Journal, 22, 441 (2012).
  24. D.-J. Kim, J.-Y. Kang, and K.-S. Kim, "Preparation of TiO2 thin films on glass beads by a rotating plasma reactor", J. Ind. & Eng. Chem., 16, 997 (2010). https://doi.org/10.1016/j.jiec.2010.07.005
  25. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of $N_{2}$-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  26. J. Y. Park and S. H. Lee, "Effect of water-backflushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  27. H. C. Lee, J. H. Cho, and J. Y. Park, "Effect of water-back-flushing time and period in advanced water treatment system by ceramic microfiltration", Membrane Journal, 18, 26 (2008).
  28. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and O3/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).