DOI QR코드

DOI QR Code

척추방사선수술시 실시간 추적검사에 의한 병소목표점 위치변이 평가

Evaluation of Real-time Target Positioning Accuracy in Spinal Radiosurgery

  • 이동준 (인제대학교 의과대학 일산백병원 신경외과학교실)
  • Lee, Dong Joon (Department of Neurosurgery, Ilsan Paik Hospital, College of Medicine, Inje University)
  • 투고 : 2013.12.10
  • 심사 : 2013.12.16
  • 발행 : 2013.12.31

초록

방사선수술은 고 용량의 방사선을 병소의 목표점에 정확하게 주위의 정상조직을 보호하면서 한 번에 혹은 수 차에 거쳐 전달하는 방법이므로 병소 국재에 대한 오차의 크기는 방사선수술에 직접적인 영향을 끼치게 된다. 본 연구에서는 영상유도 국재 장비인 ExacTrac (BrainLab, Germany)을 이용한 척추방사선수술에서 병소 목표점 국재의 오차를 평가하였다. 국재 오차를 최소화 하기위하여 방사선수술 전 '환자위치 확인장치(PPVT)'를 고안하여 부가적으로 사용하였다. 실시간 목표점오차 평가를 위하여 흉추에 전이된 종양에 대한 방사선수술 8례를 대상으로 평가하였다. 그 결과 isocenter 목표점 오차는 횡단면(lateral) 축 방향, 종단면(longitudinal) 축 방향, 수직면(vertical) 축 방향으로 각각 $0.07{\pm}0.17$ mm, $0.11{\pm}0.18$ mm, $0.13{\pm}0.26$ mm이었으며 평균 공간오차는 $0.20{\pm}0.37$ mm이었다. 병소 isocenter의 회전오차(body rotation)는 종단면(longitudinal) 축 방향 $0.14{\pm}0.07^{\circ}$, 횡단면(lateral) 축 방향 $0.11{\pm}0.07^{\circ}$, 환자테이블 각 이동 $0.03{\pm}0.04^{\circ}$로 평균오차는 $0.20{\pm}0.11^{\circ}$이었다. 본 연구결과 영상유도 국재방법을 이용한 척추방사선수술에서의 병소목표점 국재 평균오차는 임상적으로 허용할 수 있는 오차범위 이내 임을 확인하였다.

Stereotactic Radiosurgery require high accuracy and precision of patient positioning and target localization. We evaluate the real time positioning accuracy of isocenter using optic guided patient positioning system, ExacTrac (BrainLab, Germany), during spinal radiosurgery procedure. The system is based on real time detect multiple body markers attached on the selected patient skin landmarks. And a custom designed patient positioning verification tool (PPVT) was used to check the patient alignment and correct the patient repositioning before radiosurgery. In this study, We investigate the selected 8 metastatic spinal tumor cases. All type of tumors commonly closed to thoracic spinal code. To evaluate the isocenter positioning, real time patient alignment and positioning monitoring was carried out for comparing the current 3-dimensional position of markers with those of an initial reference positions. For a selected patient case, we have check the isocenter positioning per every 20 millisecond for 45 seconds during spinal radiosurgery. In this study, real time average isocenter positioning translation were $0.07{\pm}0.17$ mm, $0.11{\pm}0.18$ mm, $0.13{\pm}0.26$ mm, and $0.20{\pm}0.37$ mm in the x (lateral), y (longitudinal), z (vertical) directions and mean spatial error, respectively. And body rotations were $0.14{\pm}0.07^{\circ}$, $0.11{\pm}0.07^{\circ}$, $0.03{\pm}0.04^{\circ}$ in longitudinal, lateral, table directions and mean body rotation $0.20{\pm}0.11^{\circ}$, respectively. In this study, the maximum mean deviation of real time isocenter positioning translation during spinal radiosurgery was acceptable accuracy clinically.

키워드

참고문헌

  1. Gerstzen PC, Ozhasoglu C, Button SA, et al: Cyberknife frameless stereotactic radiosurgery for spinal lesions: Clinical experience in 125 cases. Neurosurgery 55(1):89-99 (2004)
  2. Ryu S, Yin FF, Rock J, et al: Image-Guided and Intensity-Modulated Radiosurgery for Patients with Spinal Metastasis. Cancer 97(8):2013-2018 (2003) https://doi.org/10.1002/cncr.11296
  3. Yin FF, Ryu S, Ajlouni M, et al: Image-guided procedures for intensity-modulated spinal radiosurgery. J Neurosurg 101 (Suppl):89-99 (2004)
  4. Agazaryan N, Tenn SE, Desalles AAF: Image-guided radiosurgery for spinal tumors: methods, accuracy and patient intrafraction motion. Phys. Med. Biol 25:1715-1727 (2008)
  5. Kim SY, Jin HS, Yang H, Amdur RJ, et al: A study target positioning error and its impact on dose variation in imageguided stereotactic body radiotherapy for the spine. Int J Radiation Oncology Biol Phys 73(5):1574-1579 (2009) https://doi.org/10.1016/j.ijrobp.2008.12.023
  6. Linthout N, Verellen D, Tournel K, Storme G: Six dimensional analysis with daily stereoscopic x-ray imaging of intrafraction patient motion in head and neck treatments using five points fixation masks. Med Phys 33(2):504-513 (2006) https://doi.org/10.1118/1.2165417
  7. Benedict SH, Yenice KM, Followill D, et al: Stereotactic body radiation therapy: The report of AAPM Task Group 101. Medical Physics 37(8):4078-4101 (2010) https://doi.org/10.1118/1.3438081
  8. Andrews DW, Bednarz G, Evans JJ, Downes B: A review of 3 current radiosurgery systems. Surgical Neurology 66:559-564 (2006) https://doi.org/10.1016/j.surneu.2006.08.002
  9. Stock M, Kontrisova K, Dieckmann K, et al: Development and application of a real-time monitoring and feedback system for deep inspiration breath hold based on external marker tracking. Med. Phys 33(8):2868-2877 (2006) https://doi.org/10.1118/1.2219775
  10. Liu W, Wiersma RD, Mao W, et al: Real- time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging. Phys Med Biol 53:7197-7213 (2008) https://doi.org/10.1088/0031-9155/53/24/013
  11. Baroni G, Ferrigno G, Orecchia R, et al: Real-time three-dimensional motion analysis for patient positioning verification. Radiotherapy and Oncology 54:21-27 (2000) https://doi.org/10.1016/S0167-8140(99)00166-8
  12. Medin PM, Solberg TD, DeSalles AAF, et al: Investigations of minimally invasive method for treatment of spinal malignancies with linac stereotactic radiation therapy: Accuracy and animal study. Int J Radiation Oncology Biol Phys 52(4):1111-1122 (2002) https://doi.org/10.1016/S0360-3016(01)02762-6