Trends of Innovative Clinical Drug Development using AMS (Accelerator Mass Spectrometry) and $^{14}C$-micro Tracer

가속질량분석기(Accelerator mass spectrometry, AMS)와 극미량 $^{14}C$-동위원소를 이용한 혁신적 임상시험개발동향

  • Received : 2013.10.15
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

Drug discovery and development processes are time consuming and costly endeavors. It has been reported that on average it takes 10 to 15 years and costs more than $ 1billion to bring a molecule from discovery to market. Compounds fail for various reasons but one of the significant reasons that accounts for failures in clinical trials is poor prediction/understanding of pharmacokinetics and drug metabolism in human. In an effort to improve the number of compounds that exhibit optimal absorption, distribution, metabolism, elimination (ADME), and pharmacokinetic properties in human, drug metabolism, pharmacokinetic scientists have been continually developing new technologies and compound screening strategies. Over the last few years, accelerator mass spectrometry (AMS) and its applications to preclinical/clinical pharmacokinetics and ADME studies have significantly increased, particularly for new chemical/biological entities that are difficult to support with conventional radiolabel studies. In this review, the application of AMS for micro-dosing, micro-tracer absolute bioavailability, mass balance and metabolite profiling studies will be discussed.

Keywords

References

  1. Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R. and Schacht, A. L. : How to improve R&D productivity : the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203 (2010).
  2. Allison, M. : Reinventing clinical trials. Nat. Biotechnol. 30, 41 (2012). https://doi.org/10.1038/nbt.2083
  3. U.S. Food and drug administration : FDA MIST guidance, http://www.fda.gov/downloads/Drugs/GuidanceCompliance RegulatoryInformation/Guidances/ucm079266.pdf.
  4. ICH M3 guidance, http://www.ema.europa.eu/docs/en_GB/ document_li brary/Sci ent i fic_gui deline/2009/09/ WC500002720.pdf.
  5. Bae, S. K. and Shon, J. : Microdosing studies using accelerated mass spectrometry as exploratory investigational new drug trials. Arch. Pharm. Res. 34, 1789 (2011). https://doi.org/10.1007/s12272-011-1102-3
  6. Smith, D. A. : The debate is over : accerelator MS provides the route to better drug-development paradigms/protocols. Bioanalysis 3, 391 (2011). https://doi.org/10.4155/bio.11.9
  7. Garner, R. C. : Accelerator mass spectrometry in pharmaceutical research and development-a new ultrasensitive analytical method for isotope measurement. Curr. Drug Metab. 1, 205 (2000). https://doi.org/10.2174/1389200003339054
  8. Dueker, S. R., Vuong, L. T., Lohstroh, P. N., Giacomo, J. A. and Vogel, J. S. : Quantifying exploratory low dose compounds in humans with AMS. Adv. Drug Del. Rev. 63, 518 (2011). https://doi.org/10.1016/j.addr.2010.10.009
  9. Schulze-Koenig, T., Dueker, S. R., Giacomo, J., Suter, M., Vogel, J. S. and Synal, H. : BioMICADAS : Compact next generation AMS system for pharmaceutical science. Nuclear Instr. and Methods in Physics Res. sect B : Beam interactions with Materials and Atoms 268, 891 (2010). https://doi.org/10.1016/j.nimb.2009.10.057
  10. Lappin, G. and Garner, R. C. : Current perspectives of 14Cisotope measurement in biomedical accelerator mass spectrometry. Anal. Bioanal. Chem. 378, 356 (2004). https://doi.org/10.1007/s00216-003-2348-5
  11. FDA 2004 critical path initiative, http://www.fda.gov/ ScienceResearch/SpecialTopics/CriticalPathInitiative/ ucm076689.htm.
  12. Madan, A., O'Brien, Z., Wen, J., O'Brien, C., Farber, R. H., Beaton, G., Crowe, P., Oosterhuis, B., Garner, R. C., Lappin, G. and Bozigian, H. P. : A Pharmacokinetic evaluation of five H(1) antagonists after an oral and intravenous microdose to human subjects. Br. J. Clin. Pharmacol. 67, 288 (2009). https://doi.org/10.1111/j.1365-2125.2008.03351.x
  13. Ings, R. M. J. : Microdosing : a valuable tool for accelerating drug development and the role of bioanalytical methods in meeting the challenge. Bioanalysis 1, 1293 (2009). https://doi.org/10.4155/bio.09.107
  14. Lappin, G., Wagner, C. C., Langer, O. and Van de Merbel, N. : New Ultrasensitive detection technologies and techniques for use in microdosing studies. Bioanalysis 1, 357 (2009). https://doi.org/10.4155/bio.09.40
  15. Lappin, G., Seymour, M., Young, G., Higton, D. and Hill, H. M. : An AMS method to determine analyte recovery from pharmacokinetic studies with concomitant extravascular and intravenous administration. Bioanalysis 3, 407 (2011). https://doi.org/10.4155/bio.11.6
  16. Lappin, G., Seymour, M., Young, G., Higton, D. and Hill, H. M. : AMS method validation for quantitation in pharmacokinetic studies with concomitant extravascular and intravenous administration. Bioanalysis 3, 393 (2011). https://doi.org/10.4155/bio.11.5
  17. Garner, R. C. : Practical experience of using human microdosing with AMS analysis to obtain early human drug metabolism and PK data. Bioanalysis 2, 429 (2010). https://doi.org/10.4155/bio.10.6
  18. 식품의약품 안전청 : 한국 식약청 마이크로도징 가이드 라인. "의약품의 임상시험 수행과 품목허가를 위한 비임상시험 가이드라인, 2012, 6".
  19. Graham, R. A., Hop, C. E., Borin, M. T., Lum, B. L., Colburn, D., Chang, I., Shin, Y. G., Malhi, V., Low. J. A. and Dresser, M. J. : Single and multiple dose intravenous and oral pharmakinetics of the hedgehog pathway inhibitor vismodegib in healthy female subjects. Br. J. Clin. Pharmocol. 74, 788 (2012). https://doi.org/10.1111/j.1365-2125.2012.04281.x
  20. Graham, R. A., Lum, B. L., Morrison, G., Chang, I., Jorga, K., Dean, B., Shin, Y. G., Yue, Q., Mulder, T., Malhi, V., Xie, M., Low, J. A. and Hop, C. E. : A single dose mass balance study of the Hedgehog pathway inhibitor vismodigib (GDC-0449) in human using accelerator mass spectrometry. Drug Metab. Dispos. 39, 1460 (2011). https://doi.org/10.1124/dmd.111.039339
  21. Roffey, S. J., Obach, R. S., Gedge, J. I. and Smith, D. A. : What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab. Rev. 39, 17 (2007). https://doi.org/10.1080/03602530600952172
  22. Lappin, G., Seymour, M., Gross, G., Jorgensen, M., Kall, M. and Kvaerno, L. : Meeting the MIST regulations: human metabolism in Phase I using AMS and a tiered bioanalytical approach. Bioanalysis 4, 407 (2012). https://doi.org/10.4155/bio.11.334
  23. Lappin, G. and Seymour, M. : Addressing metabolite safety during first-in-man studies using 14C-labeled drug and accelerator mass spectrometry. Bioanalysis 2, 1315 (2010). https://doi.org/10.4155/bio.10.87
  24. Lappin, G. and Stevens, L.: Biomedical accelerator mass spectrometry : recent applications in metabolism and pharmacokinetics. Exp. Opin. Drug Metab.Toxicol. 4, 1021 (2008). https://doi.org/10.1517/17425255.4.8.1021
  25. Salehpour, M., Ekblom, J., Sabetsky, V., Hakansson, K. and Possnert, G. : Accelerator mass spectrometry offers new opportunities for microdosing of peptide and protein pharmaceuticals. Rap. Commun. Mass Spec. 24, 1481 (2010). https://doi.org/10.1002/rcm.4544
  26. Dueker, S. R., Sivaraman, L., Wang, J., Wang, L., Fung, N., Maxwell, B., Bonnie, W., Christopher, L., Arnold, M. and McNerney, M. : Placental transfer of a pegylated adnectin in guinea pig (abstract #: 2783), presented poster (http:// www.toxicology.org/AI/PUB/Tox/2012toxsup.pdf).