Obacunone 황백성분의 Candida albicans에 대한 항진균효과

Antifungal Effect of Obacunone on Candida albicans

  • 한용문 (동덕여자대학교 약학대학 면역.미생물학실) ;
  • 김정현 (동덕여자대학교 약학대학 면역.미생물학실)
  • Han, Yongmoon (Department of ImmunoMicrobiology, College of Pharmacy, Dongduk Women's University) ;
  • Kim, Jeonghyeon (Department of ImmunoMicrobiology, College of Pharmacy, Dongduk Women's University)
  • 투고 : 2013.09.23
  • 심사 : 2013.12.02
  • 발행 : 2013.12.31

초록

In the present study, we determined the antifungal effect of obacunone isolated from Phellodendri Cortex against Candida ablicans, a pathogenic fungus. The antifungal effect was analyzed by an in-vitro susceptibility test and in a murine model of disseminated candidiasis. Possible mechanism of the antifungal activity was also examined. Analyses of data resulting from the susceptibility test revealed that the compound inhibited C. albicans growth. At 25 ${\mu}g$ obacunone/ml, there was app. 45% reduction of CFUs (colony forming units) as compared to obacunone-untreated C. albicans yeast cells (P<0.01). In the murine model of disseminated candidiasis due to C. albicans, obacunone enhanced resistance of mice against disseminated candidiasis. During an entire period of 30-day observation, control animals all died within 14 days, whereas 60% of obacunone-treated mice survived (P<0.05). In addition, obacunone inhibited the hyphal production, a major virulence factor of C. albicans, from the blastoconidial form. Thus, obacunone appears to have antifungal activity for C. albicans infection. This may possibly be mediated by the blockage of hyphal production.

키워드

참고문헌

  1. Schaberg, D. R., Culver, D. H. and Gaynes, R. P. : Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 16, 72S (1991).
  2. Edwards, J. E. : Invasive Candida infections: evolution of a fungal pathogen. N. Engl. J. Med. 324, 1060 (1991). https://doi.org/10.1056/NEJM199104113241511
  3. Gow, N. A., Brown, A. J. and Odds, F. C. : Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366 (2002). https://doi.org/10.1016/S1369-5274(02)00338-7
  4. Bodey, G. P. : The emergence of fungi as major hospital pathogens. J. Hosp. Infect. 11, 411 (1988). https://doi.org/10.1016/0195-6701(88)90220-4
  5. Sobel, J. D. : Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 152, 924 (1985). https://doi.org/10.1016/S0002-9378(85)80003-X
  6. Sobel, J. D. : Pathogenesis and epidemiology of vulvovaginal candidiasis. Ann. N. Y. Acad. Sci. 544, 547 (1988). https://doi.org/10.1111/j.1749-6632.1988.tb40450.x
  7. Odds, F. C., Brown, A. J. and Gow, N. A. : Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272 Review (2003). https://doi.org/10.1016/S0966-842X(03)00117-3
  8. Han, Y. : Synergic anticandidal effect of epigallocatechin-Ogallate combined with amphotericin B in a murine model of disseminated candidiasis and its anticandidal mechanism. Biol. Pharm. Bull. 30, 1693 (2007). https://doi.org/10.1248/bpb.30.1693
  9. Han, Y. and Lee, J. H. : Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol. Pharm. Bull. 28, 541 (2005). https://doi.org/10.1248/bpb.28.541
  10. Uchiyama, T., Kamikawa, H. and Ogita, Z. : Anti-ulcer effect of extract from phellodendri cortex. Yakugaku Zasshi. 109, 672 (1989).
  11. Zhou, H. Y., Wang, D. and Cui, Z. : Ferulates, amurenlactone A and amurenamide A from traditional Chinese medicine cortex Phellodendri Amurensis. J. Asian Nat. Prod. Res. 10, 409 (2008). https://doi.org/10.1080/10286020801966534
  12. Wada, K., Yagi, M., Matsumura, A., Sasaki, K., Sakata, M. and Haga, M. : Isolation of limonin and obacunone from phellodendri cortex shorten the sleeping time induced in mice by alpha-chloralose-urethane. Chem. Pharm. Bull. 38, 2332 (1990). https://doi.org/10.1248/cpb.38.2332
  13. Vikram, A., Jesudhasan, P. R., Jayaprakasha, G. K., Pillai, B. S. and Patil, B. S. : Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS and biofilm. Int. J. Food Microbiol. 15, 140 (2010).
  14. Han, Y. and Cutler, J. E. : Antibody response that protects against disseminated candidiasis. Infect. Immun. 63, 2714 (1995).
  15. Han, Y., Morrison, R. P. and Cutler, J. E. : A vaccine and monoclonal antibodies that enhance mouse resistance to Candida albicans vaginal infection. Infect. Immun. 66, 5771 (1998).
  16. Lee, J. H., Lee, J. Y., Park, J. H., Jung, H. S., Kim, J. S., Kang, S. S., Kim, Y. S. and Han, Y. : Immunoregulatory activity by daucosterol, a b-sitosterol glycoside, induces protective Th1 immune response against disseminated candidiasis in mice. Vaccine 25, 3834 (2007). https://doi.org/10.1016/j.vaccine.2007.01.108
  17. Han, Y. and Rhew, K. Y. : Ginsenoside Rd induces protective anti-Candida albicans antibody through immunological adjuvant activity. Int. Immunopharmacol. 17, 651 (2013). https://doi.org/10.1016/j.intimp.2013.08.003
  18. Arturo, C. : Antibodies and fungi: an evolving paradigm with opportunities for the development of new antifungal therapies and vaccines. Rev. Iberoam. Micol. 14, 2 (1997).
  19. Baselski, V. S., Robison, M. K., Pifer, L. W. and Woods, D. R. : Rapid detection of Pneumocystis carinii in bronchoalveolar lavage samples by using cellufluor staining. J. Clin. Microbiol. 28, 393 (1990).
  20. Cutler, J. E. : The Candida albicans phosphomannan complex in Candida-host interactions. Res. Immunol. 149, 299 (1998). https://doi.org/10.1016/S0923-2494(98)80754-2