DOI QR코드

DOI QR Code

Effect of Several Treatments on Chilling Injury of Paprika Fruits during Low Temperature Storage

몇 가지 처리가 파프리카 과실의 저온장해에 미치는 영향

  • Received : 2013.11.08
  • Accepted : 2013.12.05
  • Published : 2013.12.31

Abstract

Paprika fruits should be stored and distributed at above $7^{\circ}C$ to prevent chilling injury but the small amount of paprika that transports with other horticultural products in refrigerated container by ship usually stored less than $5^{\circ}C$ for other products. In this case, paprika fruits cannot help exposing chilling temperature, so that the paprika must be lost marketable value during a long period of transfer. This study was conducted to compare the alleviated effects of high $CO_2$ treatment (passive MAP), heat (hot water dipping), and UVc treatment on chilling injury of paprika fruits due to low temperature storage, and also to decide if these treatments can be used for transporting under $5^{\circ}C$. After each treatment the paprika were put in the low temperature storage ($4^{\circ}C$) for 20 days and afterwards change the in room temperature ($20^{\circ}C$) for 5 days. The fresh weight loss of all the treatments except the high $CO_2$ treatment showed around 7~12% after 25 days of storage and the ethylene concentration showed periodical increases and decreases as around 3 ${\mu}l/l$. The $CO_2$ concentration was rapidly increased 33% carbon dioxide in high $CO_2$ treatment during room temperature storage after cold storage for 20 days. The firmness which is key quality characteristics during storage and is decreasing caused by chilling injury was not significantly different among all treatments. However, the firmness of stored paprika was maintained highest in the treated with hot water dipping. Therefore, HWD and UVc treatment that showed 60% of electrolyte leakage in the $4^{\circ}C$ control (chilling injury control) and similar level with the $7^{\circ}C$ control (non-chilling injury control) would be effective to alleviate chilling injury in the stored paprika.

본 연구는 UVc 처리, 열수처리와 고 $CO_2$ 처리가 저온저장으로 인해 발생하는 저온장해 현상에 미치는 영향을 비교하고, 소량으로 다른 작물과 혼합 선적할 때 유지되는 $5^{\circ}C$ 이하의 저장 유통에 적용할 수 있는지 알아보기 위해 수행하였다. 각각의 처리 후 20일간 저온저장 후 상온에 5일간 저장하였다. 생체중은 MAP 조건이었던 고 $CO_2$ 처리구를 제외한 나머지 처리구에서 상온 저장후 급격히 감소하였으며, 에틸렌은 주기적으로 3% 내외의 수치를 보였다. 고 $CO_2$ 처리구는 저장 종료일인 25일에는 약 33%의 고 $CO_2$ 농도를 나타냈다. 저장 최종일에 측정한 경도는 통계적 유의성은 없었으나, 저온장해 현상이 완화되었던 열수처리에서 높았다. 저온장해 정도의 지표가 되는 전해질 용출량은 저온장해 발생온도인 $4^{\circ}C$에서는 고 $CO_2$ 처리구에서 가장 높았으며, 열수처리와 UVc처리구에서 가장 낮았는데, 비저온장해 대조구($7^{\circ}C$)와 유사한 수준이었다. 또한 저장최종일에 측정한 호흡률에서는 열수처리가 가장 낮아 저온장해가 완화되었음을 알 수 있었다. 이상의 결과로 보아 저온장해 완화 효과를 보인 열수처리와 UVc 처리는 소량으로 다른 작물과 혼합 선적할 때 유지되는 $5^{\circ}C$ 이하의 저장유통에 적용할 수 있을 것으로 판단되었다.

Keywords

References

  1. Ariel, R.V., P. Carlos, L. Laura, M.C. Pedro, A.M. Gustavo, and R.C. Alicia. 2005. UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology and Technology 35:69-78. https://doi.org/10.1016/j.postharvbio.2004.06.001
  2. Arvanitoyannis, I.S., E.M. Khah, E.C. Christakou, and F.A. Bletsos. 2005. Effect of grafting and modified atmosphere packaging on eggplant quality parameters during storage. International Journal of Food Science and Technology 40: 311-322. https://doi.org/10.1111/j.1365-2621.2004.00919.x
  3. Choi, I.L., T.J. Yoo, I.S. Kim, Y.B. Lee, and H.M. Kang. 2011. Effect of non-perforated breathable films on the quality and shelf life of paprika during MA storage in simulated long distance export condition. Journal of Bio-Environment Control. 20(2):150-155 (in Korean).
  4. Gonzalez-Aguilar, G.A., L. Gayosso, R. Cruz, J. Fortiz, R. Baez, and C.Y. Wang. 2000. Polyamines induced by hot water treatments reduce chilling injury and decay in pepper fruit. Postharvest Biol. Technol. 18:19-26. https://doi.org/10.1016/S0925-5214(99)00054-X
  5. Hwang, H.J., C.G. An, J.S. Sim, B.M. Chong, C.W. Rho, G.W. Song, C.S. Lim, J.M. Lim, and J.L. Cho. 2005. Comparison of storage life of several sweet pepper varieties. Proceeding of Kor. J. Hort. Sci. Technol. 23:68 (in Korean).
  6. Kader, A.A. 2002. Postharvest technology of horticultural crops. 3rd ed. University of California, Division of Agriculture and Natural Resources. USA.
  7. Kang, H.M. and K.W. Park. 1998. Changes in composition of free acids in relation to ethylene production during the ripening of tomato fruits. Kor. Soc. Hort. Sci. 39:385-390 (in Korean).
  8. Kang, H.M., I.S. Kim, and K.W. Park. 2005. Relationship of chilling injury and CO2 production in immature tomato fruit. Kor. J. Hort. Sci. Technol. 23:67 (in Korean).
  9. Kays J. Stanley and Paull E. Robert. 2004. Postharvest Biology. Exon Press, Athens, GA.
  10. Lee, K.A. and Y.J. Yang. 2000. Roled of elavated carbon dioxide on postharvest chilling susceptibility in squash (Cucurbita moschata). Kor. J. Hort. Sci. & Technol. 18(5):691 (in Korean).
  11. Lee, K.A. and Y.J. Yang. 2004. Effect of methyl jasmonate and elevated carbon dioxide on postharvest chilling susceptibility and quality in cucumber (Cucumis sativus L.). Kor. J. Hort. Sci. Technol. 22(3):298-301 (in Korean).
  12. Lim, C.S. and J.L. Cho. 2009. Different Susceptibility of Sweet and Hot Pepper Fruits (Capsicum Annum L.) to Surface Pitting during Storage. Kor. J. Hort. Sci. Technol. 27(2):244-249.
  13. Lim, C.S., J.M. Lim, B.S. Kim, S.M. Kang, and J.L. Cho. 2005. Changes in fruit quality of two paprika (Capsicum annuum L.) cultivars in response to storage temperatures. J. Kor. Soc. Hort. Sci. 46:369-374.
  14. Park, K.W., H.M. Kang, and C.H. Kim. 2000. Comparison of storability on film sources and storage temperature for fresh Japanese mint in MA storage. J. Bio. Env. Con. 9(1):40-46 (in Korean).
  15. Purvis, A.C. 2002. Diphenylamine reduces chilling injury of green bell pepper fruit. Postharvest Biol. Technol. 25:41-48. https://doi.org/10.1016/S0925-5214(01)00144-2
  16. Salunkhe, D.K. and B.B. Desai. 1984. Postharvest biotechnology of vegetables. Vol. CRC. p. 49-58.