DOI QR코드

DOI QR Code

Efficient Light Treatment for Graft-take and Early Growth of Grafted Tomato Seedlings

토마토 접목시 활착과 순화에 효과적인 광 처리 방법 구명

  • Kim, Sung Eun (Department of Plant and Food Sciences, Sangmyung Univ. Cheonan Campus) ;
  • Lee, Moon Haeng (Buyeo Tomato Experiment Station C.A.R.E.S.) ;
  • Kim, Young Shik (Department of Plant and Food Sciences, Sangmyung Univ. Cheonan Campus)
  • Received : 2013.09.02
  • Accepted : 2013.10.15
  • Published : 2013.12.31

Abstract

This research was conducted to elucidate the appropriate light environment right after grafting to produce vigorous cherry tomato seedlings. Tomato plants were grafted and then treated in 4 different ways: to keep in the natural light (Non), to cover the grafted stem part with aluminum foil to make only that part dark (Part), to put the grafted seedlings in the acclimation room for two (Day-2) or four days (Day-4) to make the whole seedlings in the dark condition. Tube grafting method was used for grafting, in which silicon tube of 1.5mm in diameter was used. The survival rate was the maximum in the treatment Day-2. The SPAD value, seedling quality and yield of $1^{st}$ and $2^{nd}$ cluster were the best in the treatment Part. The treatment Part needs cost more than other treatments but is more economic thanks to higher yield. Therefore it was concluded to be economically feasible to make the grafted stem part dark right after grafting in case of cherry tomato.

본 실험은 건전한 토마토 접목묘 생산을 목적으로 활착 및 순화기에 광환경을 달리하여 접목부위에 캘러스의 형성을 도우며, 접목묘의 광합성이 원활할 수 있는 적정 광환경을 구명하고자 수행하였다. 암 처리를 하지 않는 방법(Non), 접목부분만 암 처리하는 방법(Part), 2일간 암 처리 후 순화실로 옮기는 방법(Day-2), 4일간 암 처리 후 순화실로 옮기는 방법(Day-4) 등으로 처리하였다. 접목은 1.5mm 실리콘 튜브를 이용하는 방법으로 하였으며, 부분 암 처리를 위해 튜브를 끼워 둔 접목부분을 알루미늄호일로 감싸주었다. 연구결과, 활착율은 2일간 암 처리 후 순화실로 옮기는 방법(Day-2)에서 가장 좋았으며, 유묘의 SPAD 값과 묘소질 및 초기 수확량은 모두 접목부분만 암 처리한 방법(Part)에서 가장 우수하였다. 또한 경제성 분석에서도 부분 암처리 방법이 타 처리에 비해 추가 비용이 발생하지만, 초기 수확량이 많아서 타 처리보다 월등히 높은 소득이 예상되었다. 따라서 토마토 접목시 가장 적절한 광처리는 접목부분만 암 처리한 방법(Part)이 가장 좋은 방법으로 판단되었다.

Keywords

References

  1. Fernandez-Garcia, N., V. Martinez, A. Cerda, and M. Carvajal. 2002. Water and nutrient uptake of grafted tomato plants grown under saline conditions. J. of Plant Physiology 159: 899-905. https://doi.org/10.1078/0176-1617-00652
  2. Giannakou, I. and D. Karpouzas. 2003. Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes in Greece. Pest Management Science 59: 883-892. https://doi.org/10.1002/ps.692
  3. Grigoriadis, I., I. Nianiou-Obeidat, and A.S. Tsaftaris. 2005. Shoot regeneration and micrografting of micropropagated hybrid tomatoes. Journal of Horticultural Science & Biotechnology 80:183-186.
  4. Ioannou, N. 2001. Integrating soil solarization with grafting on resistant rootstocks for management of soil borne pathogens of eggplant. Journal of Horticultural Science & Biotechnology 76:396-401.
  5. King, S.R., A.R. Davis, W.G. Liu, and A. Levi. 2008. Grafting for disease resistance. HortScience 43:1673-1676.
  6. Kubota, C., M.A. McClure, N. Kokalis-Burelle, M.G. Bausher, and E.N. Rosskopf. 2008. Vegetable grafting: History, use, and current technology status in North America. Hort-Science 43:1664-1669.
  7. Lee, J.M. 1994. Cultication of grafted vegetables. 1. Current status, grafting methods, and benefits. HortScience 29:235-239.
  8. Lee, J.M. 2003. Advances in vegetable grafting. Chronica Horticulturae 43:13-19.
  9. Lee, J.M., H.J. Bang, and H.S. Ham. 1998. Grafting of vegetables. J. of Jap. Soc. Hort. Sci. 67:1098-1104. https://doi.org/10.2503/jjshs.67.1098
  10. Lee, J.M., C. Kubota, S.J. Tsao, Z. Bie, P.H. Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 127:93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  11. Leonardi, C. and F. Giuffrida. 2006 Variation of plant growth and macro-nutrient uptake in grafted tomatoes and eggplants on three different rootstocks. European Journal of Horticultural Science 71:97-101.
  12. Oda, M. 1995. New grafting methods for fruit-bearing vegetables in Japan. Japan Agricultural Research Quarterly 29: 187-194.
  13. Peregrine, W. 1982. Grafting - A simple technique for overcoming bacterial wilt in tomato. Tropical Pest Management 28:71-76. https://doi.org/10.1080/09670878209370676
  14. Pogonyi, A., Z. Pek, L. Helyes, and A. Lugasi. 2005. Grafting tomatoes for early forcing in spring has a major impact on the overall quality of main fruit components. Acta Alimentaria 34:453-462. https://doi.org/10.1556/AAlim.34.2005.4.12
  15. Rivard, C.L. and F.J. Louws. 2006. Grafting for Disease Resistance in Heirloom Tomatoes College of Agriculture and Life Sciences, ed. North Carolina Cooperative Extension Service.
  16. Rivero, R.M., J.M. Ruiz, and L. Romero. 2003. Role of Grafting in Horticultural Plants Under Stress Conditions. Food, Agriculture, & Environment 1:70-74.
  17. Ruiz, J.M. and L. Romero. 1999. Nitrogen efficiency and metabolism in grafted melon plants. Scientia Horticulturae 81:113-123. https://doi.org/10.1016/S0304-4238(98)00200-3
  18. Tikoo, S. 1979. Successful graft culture of tomato in bacterial wilt sick soils. Current Science 48:259-260.
  19. Yetisir, H. and N. Sari. 2003. Effect of different rootstock on plant growth, yield, and quality of watermelon. Australian Journal of Experimental Agriculture 43:1269-1274. https://doi.org/10.1071/EA02095