References
- A. Sanan, and S. J. Haines, "Repairing holes in the head: a history of cranioplasty," J .Neurosurg., 40, 588-603 (1997).
- Langer, R. &Vacanti, and J. P. "Tissue engineering," Science, 260, 920-926 (1993). https://doi.org/10.1126/science.8493529
- K. R. Cutroneo, "Gene therapy for tissue regeneration," J. Cell Biochem., 88, 418-425 (2003). https://doi.org/10.1002/jcb.10357
- J. Audet, "Stem cell bioengineering for regenerative medicine," Expert Opin. Biol.Ther., 4, 631-644 (2004). https://doi.org/10.1517/14712598.4.5.631
- D. E. Ingber, "Mechanical, chemical determinants of tissue development," Principles of tissue engineering, 2nd ed. San Diego: Academic Press, 101-110 (2000).
- S. E. Haynesworth, D. Reuben, and A. I. Caplan, "Cell-based tissue engineering therapies: the influence of whole body physiology," Adv. Drug Deliv. Rev., 33, 3-14 (1998). https://doi.org/10.1016/S0169-409X(98)00016-7
- J. Bonadio, "Tissue engineering via local gene delivery," J. Mol. Med., 78, 303-311 (2000). https://doi.org/10.1007/s001090000118
- M. Martins-Green "Dynamics of cell-ECM interactions," Principles of tissue engineering, 2nd ed. San Diego: Academic Press, 2000, pp. 33-56.
- E. Bell, "Tissue engineering in perspective," Principles of tissue engineering, 2nd ed. San Diego: Academic Press, (2000).
- J. J. Klawitter, and S. F. Hulbert, "Application of porous ceramics for theattachment of load bearing internal orthopedic applications," J Biomed Mater Res, 2, 161-168 (1971).
- L. G. Cima, J. P. Vacanti, C. Vacanti, D. E Ingber, D. Mooney, and R. Langer, "Tissue engineering by cell transplantation using degradablepolymer substrates," J Biomech Eng; 113, 143-51 (1991). https://doi.org/10.1115/1.2891228
- M. C. Wake, C. W. Patrick Jr, and A. G. Mikos, "Pore morphology effectson the fibrovascular tissue growth in porous polymer substrates," Cell Transplant, 3, 339-343 (1994). https://doi.org/10.1177/096368979400300411
- D. J. Mooney, L. G. Cima, R. Langer, L. Johnson, L. K. Hansen, D. E. Ingber, and J. P. Vacanti, "Principles of tissue engineering and reconstructionusing polymer-cell constructs." Mater Res SocSympProc, 252-345 (1992).
- C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, "Geometric control of cell life and death," Science, 276, 1425-1428 (1997). https://doi.org/10.1126/science.276.5317.1425
- L. E. Freed, G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer, "Biodegradable polymer scaffolds fortissue engineering," Biotechnology, 12, 689-693 (1994). https://doi.org/10.1038/nbt0794-689
- L. E. Freed, D. A. Grande, Z. Lingbin, J. Emmanual, J. C. Marquis, and R. Langer, "Joint resurfacing using allograft chondrocytes andsynthetic biodegradable polymer scaffolds," J Biomed Mater Res, 28, 891-899 (1994). https://doi.org/10.1002/jbm.820280808
- D. A. Grande, C. Halberstadt, G. Naughton, R. Schwartz, and R. Manji, "Evaluation of matrix scaffolds for tissue engineeringof articular cartilage grafts," J Biomed Mater Res, 34, 211-220 (1997). https://doi.org/10.1002/(SICI)1097-4636(199702)34:2<211::AID-JBM10>3.0.CO;2-L
- Torquato, "S. Random Heterogenous Materials: Microstructure and MacroscopicProperties," Springer, New York, (2002).
- A. G. Mikos, G. Sarakinos, M. D. Lyman, D. E. Ingber, J. P. Vacanti, and R. Langer. "Prevascularization of porous biodegradable polymers," Biotechnol Bioeng; 42, 716-723 (1993). https://doi.org/10.1002/bit.260420606
- J. H. Brekke, "A rationale delivery of osteoconductive proteins(A review)," Tissue Eng, 2, 97 (1996). https://doi.org/10.1089/ten.1996.2.97
- R. W. Goulet, S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp, "The relationship between the structural and orthogonalcompressive properties of trabecular bone," J. Biomech., 27m, 375-389 (1994).
- K. Hayashi, "Biomechanics of soft tissue in cardiovascular systems," G. Holzapfel and R. W. Ogden (Ed.), Springer, New York, 2003, pp. 15-64.
- F. Gaynor Evans, R. Herbert, and Lissner, "Tensile and Compressive Strength of Human Parietal Bone," J. Applied Physiology, 10, 3493- 3497 (1957).
- S. V. Dorozhkin, "Bio ceramics of calcium orthophosphates ; review," Biomaterials., 31, 1465-1485 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050
- J. P. Vacanti, M. A. Morse, W. M. Saltzman, A. J. Domb, A. Peter- Atayde, and R. Langer, "Selective cell transplantation usingbioabsorbable artificial polymers as matrices," J Pediatr Surg, 23(1), 3-9 (1988). https://doi.org/10.1016/S0022-3468(88)80529-3
- J. H. Brekke, "A rationale delivery of osteoconductive proteins(A review)." Tissue Eng, 2, 97 (1996). https://doi.org/10.1089/ten.1996.2.97
- K. E. Healy, K. Whang, and C. H. Thomas, "Method of fabricating emulsion freeze-dried scaffold bodies and resulting products," US Patent No. 5,723,508, 1998.
- S. C. Hollister, "Porous scaffold design for tissue engineering," Nat Mater, 4, (2005).
- K. F. Leong, C. M. Cheah, C. K. Chua, "Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs," Biomaterials, 24, 2363-2378 (2003). https://doi.org/10.1016/S0142-9612(03)00030-9
- N Wang, J. P. Butler, D. E. Ingber, "Mechanotransduction acrossthe cell surface and through the cytoskeleton," Science, 260, 1124- 1127 (1993). https://doi.org/10.1126/science.7684161
- J. H. Brauker, V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson, "Neovascularization of syntheticmembranes directed by membrane microarchitecture," J Biomed- Mater Res, 29(12), 1517-1524 (1995). https://doi.org/10.1002/jbm.820291208
- P. X. Ma, and R. Y. Zhang, "Synthetic nano-scale fibrous extracellularmatrix," J Biomed Mater Res, 46(1), 60-72 (1999). https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H
- H Lo, M. S. Ponticiello, and K. W. Leong, "Fabrication of controlledrelease biodegradable foams by phase separation," Tissue Eng, 1, 15-28 (1995). https://doi.org/10.1089/ten.1995.1.15
- C. E, Holy, M. S. Shoichet, and J. E. Davies, "Engineering threedimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period," J Biomed Mater Res, 51(3), 376-382 (2000). https://doi.org/10.1002/1097-4636(20000905)51:3<376::AID-JBM11>3.0.CO;2-G
- D. J. Mooney, L. G. Cima, R. Langer, L. Johnson, L. K. Hansen, D. E. Ingber, and J. P. Vacanti, "Principles of tissue engineering and reconstruction using polymer-cell constructs," Mater Res SocSymp Proc, 252, 345 (1992).
- A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti. "Preparation and characterization of poly(l-lactic acid) foams," Polymer, 35, 1068-1077 (1994). https://doi.org/10.1016/0032-3861(94)90953-9
- A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, "Laminated three-dimensional biodegradable foams for use in tissue engineering," Biomaterials, 14(5), 323-330 (1993). https://doi.org/10.1016/0142-9612(93)90049-8
- A. G. Mikos, G. Sarakinos, J. P. Vacanti, R. S. Langer, and L. G. Cima, "Biocompatible polymer membranes and methods of preparation of three-dimensional membrane structures," US Patent No. 5, 514, 378 (1996).
- R. C. Thomson, M. J. Yaszemski, J. M. Power, and A. G. Mikos, "Fabrication of biodegradable polymer scaffolds to engineer trabecular bone," J BiomaterSci-Polym, 7(1), 23-38 (1995).
- R. C. Thomson, A. K. Shung, M. J. Yaszemski, and A. G. Mikos. "Polymer scaffold processing. In: Lanza RP, Langer R, Vacanti JP, editors," Principles of tissue engineering, 2nd ed, San Diego: Academic Press, 2000. Pp. 251-262.
- M. S. Widmer, and A. G. Mikos, "Fabrication of biodegradable polymer scaffolds for tissue engineering," C. W. Patrick Jr, A. G. Mikos, L. V. McIntire (Ed.), Frontiers in tissue engineering, New York: Elsevier Sciences, 1998, pp. 107-120.
- D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, "Novel approach to fabricate porous sponges of poly(d,llactic- co- glycolic acid) without the use of organic solvents," Biomaterials, 17(14), 1417-1422 (1996). https://doi.org/10.1016/0142-9612(96)87284-X
- D. F. Baldwin, M. Shimbo, and N. P. Suh. "The role of gas dissolution and induced crystallization during microcellular polymer processing: a study of poly(ethylene terephthalate) and carbon dioxide systems," J Eng Mater-T ASME, 117(1), 62-74 (1995). https://doi.org/10.1115/1.2804373
- L. D. Harris, B. S. Kim, and D. J. Mooney, "Open pore biodegradable matrices formed with gas foaming," J Biomed Mater Res, 42(3), 396-402 (1998). https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
- K. E. Healy, K. Whang, and C. H. Thomas, "Method of fabricating emulsion freeze-dried scaffold bodies and resulting products," US Patent No. 5, 723, 508, 1998.
- K. Whang, C. K. Thomas, G. Nuber, and K. E. Healy, "A novel method to fabricate bioabsorbable scaffolds," Polymer, 36(4), 837-42 (1995). https://doi.org/10.1016/0032-3861(95)93115-3
- V. P. Shastri, I. Martin, and R. Langer, "Macroporous polymer foams by hydrocarbon templating," Proc Natl Acad Sci USA, 97(5), 1970-1975, (2000). https://doi.org/10.1073/pnas.97.5.1970
- C. K. Chua, and K. F. Leong, "Rapid prototyping: principles of applications and manufacturing," Singapore: Wiley, (1997).
- D. Kochan, "Solid freeform manufacturing-possibilities and restrictions," Computind, 20(2), 133-140 (1992).
- W. Y. Yeong, C. K. Chua, K. F. Leong, and M. Chandrasekaran, "Rapid prototyping in tissue engineering: challenges and potential," Trends Biotechnol, 22, 643-652 (2004). https://doi.org/10.1016/j.tibtech.2004.10.004
- K. F. Leong, C. M. Cheah, and C. K Chua, "Solid freeform fabrication of threedimensional scaffolds for engineering replacement tissues and organs," Biomaterials, 24, 2363-2378 (2003). https://doi.org/10.1016/S0142-9612(03)00030-9
- V. L. Tsang, and S. N. Bhatia, "Three dimensional tissue fabrication." Adv. Drug Deliv., 56, 1635-1647 (2004). https://doi.org/10.1016/j.addr.2004.05.001
- E. Sachlos, and J. T. Czernuszka, "Making scaffolds work: a review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds," Eur. Cell Mater, 5, 29- 40 (2003). https://doi.org/10.22203/eCM.v005a03
- J. P. Kruth, "Material incress manufacturing by rapid prototyping techniques," Ann CIRP, 40(2), 603-614 (1991). https://doi.org/10.1016/S0007-8506(07)61136-6
- C. K. Chua, and K. F. Leong, Rapid prototyping: principles of applications and manufacturing, Singapore, Wiley, (1997).
- P. S. D'Urso, W. J. Earwaker, T. M. Barker, M. J. Redmond, R. G. Thompson, D. J. Effeney, and F. H. Tomlinson, "Custom cranioplasty using stereolithography and acrylic," Br J PlastSurg, 53(3), 200-204 (2000).
- B. Sanghera, S. Naique, Y. Papaharilaou, and A. Amis, "Preliminary study of rapid prototype medical models," Rapid Prototyping J, 7(5), 275-284 (2001). https://doi.org/10.1108/13552540110410486
- P. F. John, W. M. V. Johan, D. David, C. M. Jan Paul, A. H. Theresa, G. M. Antonios, A. John, and Jansen, "Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model," J. Biomed. Mater. Res, 59, 547-556 (2002). https://doi.org/10.1002/jbm.1268
- B. Dhariwala, E. Hunt, and T Boland, "Rapid prototyping of tissueengineering constructs, using photopolymerizable hydrogels and stereolithography," Tissue Eng., 10, 1316-1322 (2004). https://doi.org/10.1089/ten.2004.10.1316
- M. N. Cooke, J. P, Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J. Biomed. Mater. Res., 64B, 65-69 (2003). https://doi.org/10.1002/jbm.b.10485
- C. K Chua, K. F. Leong, K. H. Tan, F. E. Wiria, and Cheah, C. M. "Development of tissue scafflds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects," J. Mater. Sci. Mater. Med., 15, 1113-1121 (2004). https://doi.org/10.1023/B:JMSM.0000046393.81449.a5
- K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, W. S. Gui, W. S. Tan, and F. E. Wiria. "Selective laser sintering of biocompatible polymers for applications in tissue engineering," Biomed. Mater. Eng., 15, 113-124 (2005).
- S. S. Kim, H. Utsunomiya, J. A. Koski, B. M. Wu, M. J. Cima, J. Sohn, K. Mukai, L. G. Griffith, and J. P. Vacanti, "Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels," Ann Surg, 228(1), 8-13 (1998). https://doi.org/10.1097/00000658-199807000-00002
- A. Russell, Giordano, M. Benjamin, S. W. B. Wu, G. C. Linda, M. S. Emanuel, J. C. Michael, "Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing," J. Biomater. Sci. Polym. 8, 63-75 (1996).
- T. M. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, "Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures," Biomaterials, 23, 1283- 1293 (2002). https://doi.org/10.1016/S0142-9612(01)00243-5
- J. Malda, T. B. F. Woodfield, F. van der Vloodt, C. Wilson, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle, "The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage," Biomaterials, 26, 63-72 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.046
- J Malda, T. B. Woodfield, F. van der Vloodt, F. K. Kooy, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle, "The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs," Biomaterials 25, 5773-5780 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.028
- T. B. F. Woodfielda, J. Malda, J. de Wijn, F. Péters, J. Riesle, C. A. van Blitterswijk, "Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fi ber-deposition technique," Biomaterials 25, 4149-4161 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.056
- S. Khalil, J. Nam, and W. Sun, "Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds," Rapid Prototyp. J., 11, 9-17 (2005). https://doi.org/10.1108/13552540510573347
- I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, "Fused deposition modeling of novel scaffold architectures for tissue engineering applications," Biomaterials, 23, 1169-1185 (2002). https://doi.org/10.1016/S0142-9612(01)00232-0
- W. H. Dietmar, S. Thorsten, IwanZein, KeeWoei Ng, Swee- HinTeoh, and C. T. Kim, "Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling," J. Biomed. Mater. Res., 55, 203-216 (2001). https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
- R. Landers, U. Hubner, R. Schmelzeisen, and R. Mulhaupt, "Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering," Biomaterials, 23, 4437-4447 (2002). https://doi.org/10.1016/S0142-9612(02)00139-4
- M. W. Jessica, A. Adebisi, M. S. Rachel, L. F. Colleen , H. K. Paul, E. F. Stephen, J. H. Scott, and D. Suman, "Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering," Biomaterials 26, 4817-4827 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.057
- D. L. Cohen, S. Maher, J. Rawlinson, H. Lipson and L. J. Bonassar, "Direct freeform fabrication of living cell-seeded alginate hydrogel implants in anatomic shapes," Trans. Orthopaedic Res. Soc., 51, 1781 (2005).
- J. M. Taboas, R. D. Maddox, P. H. Krebsbach, and S. J. Hollister, "Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds," Biomaterials, 24, 181-194 (2003). https://doi.org/10.1016/S0142-9612(02)00276-4
- H. Y. Yang, X. P. Chi, S. Yang, and J. R. G. Evans, "Mechanical strength of extrusion freeformed calcium phosphate filaments," J Mater Sci : Mater Med, 21, 1503-1510 (2010). https://doi.org/10.1007/s10856-010-4009-5
- S. Bose, and S. Tarafder, "Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review," Acta Biomaterialia, 8, 1401-1421 (2012). https://doi.org/10.1016/j.actbio.2011.11.017
- H Kawahara, "Bioceramics for hard tissue replacement," clinical Mater., 2, 181-206 (1987). https://doi.org/10.1016/0267-6605(87)90044-8
- Klaas de Groot, "Clinical applications of calcium phosphate biomaterials : a review," Ceramics International, 19, 363-366 (1993). https://doi.org/10.1016/0272-8842(93)90050-2
- H. Youlian, F. Hongsong, L. Bo, G. Bo, L. Ming, Z. Xingdong, "Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics," J Mater Sci and engine R. 70(3-6), 225-242 (2010). https://doi.org/10.1016/j.mser.2010.06.010
- M. K. Ahn, Y. W. Moon, Y. H. Koh and H. E. Kim, "Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique," Ceramics international, 39(5), 5879-5885 (2013). https://doi.org/10.1016/j.ceramint.2013.01.006
- X. Renlong, L. Yang, C. Jiyong, Z. Qiyi, "A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo," Biomaterials, 26(33), 6477-6486 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.028
- V. D. Sergey, "Bio ceramics of calcium orthophosphates; review," Biomaterials, 31, 1465-1485 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050
- P. L. Jia, R. Joost, Clemens A. Van Blitterswijk, and Klaas de Groot Porous "Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment," Biomaterials, 27(8), 1223-1235 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.033