Solid Freeform Fabrication Techniques for Producing Porous Bioceramic Scaffolds for Tissue Regeneration

자유형상 제조기술을 이용한 조직재생용 다공성 생체 세라믹 스캐폴드 제조기술

  • Jo, In-Hwan (Department of Bio-convergence Engineering, Korea University) ;
  • Koh, Young-Hag (Department of Bio-convergence Engineering, Korea University)
  • 조인환 (고려대학교 일반대학원 바이오융합공학과) ;
  • 고영학 (고려대학교 일반대학원 바이오융합공학과)
  • Published : 2013.06.01

Abstract

The scaffolds with an open porous structure are one of the most important components for successful tissue regeneration, which can provide 3-dimensional space and biocompatible surfaces for favorable bone ingrowth. Fundamentally, the mechanical properties and biological functions of these porous scaffolds are strongly affected by their porous structure, such as porosity, pore size, interconnections between the pores. Thus, considerable effort has been made to develop new techniques for the production of porous scaffolds with a controlled porous structure, including sponge replication, freeze casting, direct foaming techniques, vacuum-assisted foaming of a ceramic suspension and solid freeform fabrications (SFFs). This paper reviews the operation principle and application of various state-of-the art SFFs, which can create porous scaffolds with an arbitrary geometry, as well as a tightly controlled porous structure.

Keywords

References

  1. A. Sanan, and S. J. Haines, "Repairing holes in the head: a history of cranioplasty," J .Neurosurg., 40, 588-603 (1997).
  2. Langer, R. &Vacanti, and J. P. "Tissue engineering," Science, 260, 920-926 (1993). https://doi.org/10.1126/science.8493529
  3. K. R. Cutroneo, "Gene therapy for tissue regeneration," J. Cell Biochem., 88, 418-425 (2003). https://doi.org/10.1002/jcb.10357
  4. J. Audet, "Stem cell bioengineering for regenerative medicine," Expert Opin. Biol.Ther., 4, 631-644 (2004). https://doi.org/10.1517/14712598.4.5.631
  5. D. E. Ingber, "Mechanical, chemical determinants of tissue development," Principles of tissue engineering, 2nd ed. San Diego: Academic Press, 101-110 (2000).
  6. S. E. Haynesworth, D. Reuben, and A. I. Caplan, "Cell-based tissue engineering therapies: the influence of whole body physiology," Adv. Drug Deliv. Rev., 33, 3-14 (1998). https://doi.org/10.1016/S0169-409X(98)00016-7
  7. J. Bonadio, "Tissue engineering via local gene delivery," J. Mol. Med., 78, 303-311 (2000). https://doi.org/10.1007/s001090000118
  8. M. Martins-Green "Dynamics of cell-ECM interactions," Principles of tissue engineering, 2nd ed. San Diego: Academic Press, 2000, pp. 33-56.
  9. E. Bell, "Tissue engineering in perspective," Principles of tissue engineering, 2nd ed. San Diego: Academic Press, (2000).
  10. J. J. Klawitter, and S. F. Hulbert, "Application of porous ceramics for theattachment of load bearing internal orthopedic applications," J Biomed Mater Res, 2, 161-168 (1971).
  11. L. G. Cima, J. P. Vacanti, C. Vacanti, D. E Ingber, D. Mooney, and R. Langer, "Tissue engineering by cell transplantation using degradablepolymer substrates," J Biomech Eng; 113, 143-51 (1991). https://doi.org/10.1115/1.2891228
  12. M. C. Wake, C. W. Patrick Jr, and A. G. Mikos, "Pore morphology effectson the fibrovascular tissue growth in porous polymer substrates," Cell Transplant, 3, 339-343 (1994). https://doi.org/10.1177/096368979400300411
  13. D. J. Mooney, L. G. Cima, R. Langer, L. Johnson, L. K. Hansen, D. E. Ingber, and J. P. Vacanti, "Principles of tissue engineering and reconstructionusing polymer-cell constructs." Mater Res SocSympProc, 252-345 (1992).
  14. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, "Geometric control of cell life and death," Science, 276, 1425-1428 (1997). https://doi.org/10.1126/science.276.5317.1425
  15. L. E. Freed, G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer, "Biodegradable polymer scaffolds fortissue engineering," Biotechnology, 12, 689-693 (1994). https://doi.org/10.1038/nbt0794-689
  16. L. E. Freed, D. A. Grande, Z. Lingbin, J. Emmanual, J. C. Marquis, and R. Langer, "Joint resurfacing using allograft chondrocytes andsynthetic biodegradable polymer scaffolds," J Biomed Mater Res, 28, 891-899 (1994). https://doi.org/10.1002/jbm.820280808
  17. D. A. Grande, C. Halberstadt, G. Naughton, R. Schwartz, and R. Manji, "Evaluation of matrix scaffolds for tissue engineeringof articular cartilage grafts," J Biomed Mater Res, 34, 211-220 (1997). https://doi.org/10.1002/(SICI)1097-4636(199702)34:2<211::AID-JBM10>3.0.CO;2-L
  18. Torquato, "S. Random Heterogenous Materials: Microstructure and MacroscopicProperties," Springer, New York, (2002).
  19. A. G. Mikos, G. Sarakinos, M. D. Lyman, D. E. Ingber, J. P. Vacanti, and R. Langer. "Prevascularization of porous biodegradable polymers," Biotechnol Bioeng; 42, 716-723 (1993). https://doi.org/10.1002/bit.260420606
  20. J. H. Brekke, "A rationale delivery of osteoconductive proteins(A review)," Tissue Eng, 2, 97 (1996). https://doi.org/10.1089/ten.1996.2.97
  21. R. W. Goulet, S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp, "The relationship between the structural and orthogonalcompressive properties of trabecular bone," J. Biomech., 27m, 375-389 (1994).
  22. K. Hayashi, "Biomechanics of soft tissue in cardiovascular systems," G. Holzapfel and R. W. Ogden (Ed.), Springer, New York, 2003, pp. 15-64.
  23. F. Gaynor Evans, R. Herbert, and Lissner, "Tensile and Compressive Strength of Human Parietal Bone," J. Applied Physiology, 10, 3493- 3497 (1957).
  24. S. V. Dorozhkin, "Bio ceramics of calcium orthophosphates ; review," Biomaterials., 31, 1465-1485 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050
  25. J. P. Vacanti, M. A. Morse, W. M. Saltzman, A. J. Domb, A. Peter- Atayde, and R. Langer, "Selective cell transplantation usingbioabsorbable artificial polymers as matrices," J Pediatr Surg, 23(1), 3-9 (1988). https://doi.org/10.1016/S0022-3468(88)80529-3
  26. J. H. Brekke, "A rationale delivery of osteoconductive proteins(A review)." Tissue Eng, 2, 97 (1996). https://doi.org/10.1089/ten.1996.2.97
  27. K. E. Healy, K. Whang, and C. H. Thomas, "Method of fabricating emulsion freeze-dried scaffold bodies and resulting products," US Patent No. 5,723,508, 1998.
  28. S. C. Hollister, "Porous scaffold design for tissue engineering," Nat Mater, 4, (2005).
  29. K. F. Leong, C. M. Cheah, C. K. Chua, "Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs," Biomaterials, 24, 2363-2378 (2003). https://doi.org/10.1016/S0142-9612(03)00030-9
  30. N Wang, J. P. Butler, D. E. Ingber, "Mechanotransduction acrossthe cell surface and through the cytoskeleton," Science, 260, 1124- 1127 (1993). https://doi.org/10.1126/science.7684161
  31. J. H. Brauker, V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson, "Neovascularization of syntheticmembranes directed by membrane microarchitecture," J Biomed- Mater Res, 29(12), 1517-1524 (1995). https://doi.org/10.1002/jbm.820291208
  32. P. X. Ma, and R. Y. Zhang, "Synthetic nano-scale fibrous extracellularmatrix," J Biomed Mater Res, 46(1), 60-72 (1999). https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H
  33. H Lo, M. S. Ponticiello, and K. W. Leong, "Fabrication of controlledrelease biodegradable foams by phase separation," Tissue Eng, 1, 15-28 (1995). https://doi.org/10.1089/ten.1995.1.15
  34. C. E, Holy, M. S. Shoichet, and J. E. Davies, "Engineering threedimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period," J Biomed Mater Res, 51(3), 376-382 (2000). https://doi.org/10.1002/1097-4636(20000905)51:3<376::AID-JBM11>3.0.CO;2-G
  35. D. J. Mooney, L. G. Cima, R. Langer, L. Johnson, L. K. Hansen, D. E. Ingber, and J. P. Vacanti, "Principles of tissue engineering and reconstruction using polymer-cell constructs," Mater Res SocSymp Proc, 252, 345 (1992).
  36. A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti. "Preparation and characterization of poly(l-lactic acid) foams," Polymer, 35, 1068-1077 (1994). https://doi.org/10.1016/0032-3861(94)90953-9
  37. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, "Laminated three-dimensional biodegradable foams for use in tissue engineering," Biomaterials, 14(5), 323-330 (1993). https://doi.org/10.1016/0142-9612(93)90049-8
  38. A. G. Mikos, G. Sarakinos, J. P. Vacanti, R. S. Langer, and L. G. Cima, "Biocompatible polymer membranes and methods of preparation of three-dimensional membrane structures," US Patent No. 5, 514, 378 (1996).
  39. R. C. Thomson, M. J. Yaszemski, J. M. Power, and A. G. Mikos, "Fabrication of biodegradable polymer scaffolds to engineer trabecular bone," J BiomaterSci-Polym, 7(1), 23-38 (1995).
  40. R. C. Thomson, A. K. Shung, M. J. Yaszemski, and A. G. Mikos. "Polymer scaffold processing. In: Lanza RP, Langer R, Vacanti JP, editors," Principles of tissue engineering, 2nd ed, San Diego: Academic Press, 2000. Pp. 251-262.
  41. M. S. Widmer, and A. G. Mikos, "Fabrication of biodegradable polymer scaffolds for tissue engineering," C. W. Patrick Jr, A. G. Mikos, L. V. McIntire (Ed.), Frontiers in tissue engineering, New York: Elsevier Sciences, 1998, pp. 107-120.
  42. D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, "Novel approach to fabricate porous sponges of poly(d,llactic- co- glycolic acid) without the use of organic solvents," Biomaterials, 17(14), 1417-1422 (1996). https://doi.org/10.1016/0142-9612(96)87284-X
  43. D. F. Baldwin, M. Shimbo, and N. P. Suh. "The role of gas dissolution and induced crystallization during microcellular polymer processing: a study of poly(ethylene terephthalate) and carbon dioxide systems," J Eng Mater-T ASME, 117(1), 62-74 (1995). https://doi.org/10.1115/1.2804373
  44. L. D. Harris, B. S. Kim, and D. J. Mooney, "Open pore biodegradable matrices formed with gas foaming," J Biomed Mater Res, 42(3), 396-402 (1998). https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
  45. K. E. Healy, K. Whang, and C. H. Thomas, "Method of fabricating emulsion freeze-dried scaffold bodies and resulting products," US Patent No. 5, 723, 508, 1998.
  46. K. Whang, C. K. Thomas, G. Nuber, and K. E. Healy, "A novel method to fabricate bioabsorbable scaffolds," Polymer, 36(4), 837-42 (1995). https://doi.org/10.1016/0032-3861(95)93115-3
  47. V. P. Shastri, I. Martin, and R. Langer, "Macroporous polymer foams by hydrocarbon templating," Proc Natl Acad Sci USA, 97(5), 1970-1975, (2000). https://doi.org/10.1073/pnas.97.5.1970
  48. C. K. Chua, and K. F. Leong, "Rapid prototyping: principles of applications and manufacturing," Singapore: Wiley, (1997).
  49. D. Kochan, "Solid freeform manufacturing-possibilities and restrictions," Computind, 20(2), 133-140 (1992).
  50. W. Y. Yeong, C. K. Chua, K. F. Leong, and M. Chandrasekaran, "Rapid prototyping in tissue engineering: challenges and potential," Trends Biotechnol, 22, 643-652 (2004). https://doi.org/10.1016/j.tibtech.2004.10.004
  51. K. F. Leong, C. M. Cheah, and C. K Chua, "Solid freeform fabrication of threedimensional scaffolds for engineering replacement tissues and organs," Biomaterials, 24, 2363-2378 (2003). https://doi.org/10.1016/S0142-9612(03)00030-9
  52. V. L. Tsang, and S. N. Bhatia, "Three dimensional tissue fabrication." Adv. Drug Deliv., 56, 1635-1647 (2004). https://doi.org/10.1016/j.addr.2004.05.001
  53. E. Sachlos, and J. T. Czernuszka, "Making scaffolds work: a review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds," Eur. Cell Mater, 5, 29- 40 (2003). https://doi.org/10.22203/eCM.v005a03
  54. J. P. Kruth, "Material incress manufacturing by rapid prototyping techniques," Ann CIRP, 40(2), 603-614 (1991). https://doi.org/10.1016/S0007-8506(07)61136-6
  55. C. K. Chua, and K. F. Leong, Rapid prototyping: principles of applications and manufacturing, Singapore, Wiley, (1997).
  56. P. S. D'Urso, W. J. Earwaker, T. M. Barker, M. J. Redmond, R. G. Thompson, D. J. Effeney, and F. H. Tomlinson, "Custom cranioplasty using stereolithography and acrylic," Br J PlastSurg, 53(3), 200-204 (2000).
  57. B. Sanghera, S. Naique, Y. Papaharilaou, and A. Amis, "Preliminary study of rapid prototype medical models," Rapid Prototyping J, 7(5), 275-284 (2001). https://doi.org/10.1108/13552540110410486
  58. P. F. John, W. M. V. Johan, D. David, C. M. Jan Paul, A. H. Theresa, G. M. Antonios, A. John, and Jansen, "Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model," J. Biomed. Mater. Res, 59, 547-556 (2002). https://doi.org/10.1002/jbm.1268
  59. B. Dhariwala, E. Hunt, and T Boland, "Rapid prototyping of tissueengineering constructs, using photopolymerizable hydrogels and stereolithography," Tissue Eng., 10, 1316-1322 (2004). https://doi.org/10.1089/ten.2004.10.1316
  60. M. N. Cooke, J. P, Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J. Biomed. Mater. Res., 64B, 65-69 (2003). https://doi.org/10.1002/jbm.b.10485
  61. C. K Chua, K. F. Leong, K. H. Tan, F. E. Wiria, and Cheah, C. M. "Development of tissue scafflds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects," J. Mater. Sci. Mater. Med., 15, 1113-1121 (2004). https://doi.org/10.1023/B:JMSM.0000046393.81449.a5
  62. K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, W. S. Gui, W. S. Tan, and F. E. Wiria. "Selective laser sintering of biocompatible polymers for applications in tissue engineering," Biomed. Mater. Eng., 15, 113-124 (2005).
  63. S. S. Kim, H. Utsunomiya, J. A. Koski, B. M. Wu, M. J. Cima, J. Sohn, K. Mukai, L. G. Griffith, and J. P. Vacanti, "Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels," Ann Surg, 228(1), 8-13 (1998). https://doi.org/10.1097/00000658-199807000-00002
  64. A. Russell, Giordano, M. Benjamin, S. W. B. Wu, G. C. Linda, M. S. Emanuel, J. C. Michael, "Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing," J. Biomater. Sci. Polym. 8, 63-75 (1996).
  65. T. M. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, "Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures," Biomaterials, 23, 1283- 1293 (2002). https://doi.org/10.1016/S0142-9612(01)00243-5
  66. J. Malda, T. B. F. Woodfield, F. van der Vloodt, C. Wilson, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle, "The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage," Biomaterials, 26, 63-72 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.046
  67. J Malda, T. B. Woodfield, F. van der Vloodt, F. K. Kooy, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle, "The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs," Biomaterials 25, 5773-5780 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.028
  68. T. B. F. Woodfielda, J. Malda, J. de Wijn, F. Péters, J. Riesle, C. A. van Blitterswijk, "Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fi ber-deposition technique," Biomaterials 25, 4149-4161 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.056
  69. S. Khalil, J. Nam, and W. Sun, "Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds," Rapid Prototyp. J., 11, 9-17 (2005). https://doi.org/10.1108/13552540510573347
  70. I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, "Fused deposition modeling of novel scaffold architectures for tissue engineering applications," Biomaterials, 23, 1169-1185 (2002). https://doi.org/10.1016/S0142-9612(01)00232-0
  71. W. H. Dietmar, S. Thorsten, IwanZein, KeeWoei Ng, Swee- HinTeoh, and C. T. Kim, "Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling," J. Biomed. Mater. Res., 55, 203-216 (2001). https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
  72. R. Landers, U. Hubner, R. Schmelzeisen, and R. Mulhaupt, "Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering," Biomaterials, 23, 4437-4447 (2002). https://doi.org/10.1016/S0142-9612(02)00139-4
  73. M. W. Jessica, A. Adebisi, M. S. Rachel, L. F. Colleen , H. K. Paul, E. F. Stephen, J. H. Scott, and D. Suman, "Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering," Biomaterials 26, 4817-4827 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.057
  74. D. L. Cohen, S. Maher, J. Rawlinson, H. Lipson and L. J. Bonassar, "Direct freeform fabrication of living cell-seeded alginate hydrogel implants in anatomic shapes," Trans. Orthopaedic Res. Soc., 51, 1781 (2005).
  75. J. M. Taboas, R. D. Maddox, P. H. Krebsbach, and S. J. Hollister, "Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds," Biomaterials, 24, 181-194 (2003). https://doi.org/10.1016/S0142-9612(02)00276-4
  76. H. Y. Yang, X. P. Chi, S. Yang, and J. R. G. Evans, "Mechanical strength of extrusion freeformed calcium phosphate filaments," J Mater Sci : Mater Med, 21, 1503-1510 (2010). https://doi.org/10.1007/s10856-010-4009-5
  77. S. Bose, and S. Tarafder, "Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review," Acta Biomaterialia, 8, 1401-1421 (2012). https://doi.org/10.1016/j.actbio.2011.11.017
  78. H Kawahara, "Bioceramics for hard tissue replacement," clinical Mater., 2, 181-206 (1987). https://doi.org/10.1016/0267-6605(87)90044-8
  79. Klaas de Groot, "Clinical applications of calcium phosphate biomaterials : a review," Ceramics International, 19, 363-366 (1993). https://doi.org/10.1016/0272-8842(93)90050-2
  80. H. Youlian, F. Hongsong, L. Bo, G. Bo, L. Ming, Z. Xingdong, "Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics," J Mater Sci and engine R. 70(3-6), 225-242 (2010). https://doi.org/10.1016/j.mser.2010.06.010
  81. M. K. Ahn, Y. W. Moon, Y. H. Koh and H. E. Kim, "Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique," Ceramics international, 39(5), 5879-5885 (2013). https://doi.org/10.1016/j.ceramint.2013.01.006
  82. X. Renlong, L. Yang, C. Jiyong, Z. Qiyi, "A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo," Biomaterials, 26(33), 6477-6486 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.028
  83. V. D. Sergey, "Bio ceramics of calcium orthophosphates; review," Biomaterials, 31, 1465-1485 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050
  84. P. L. Jia, R. Joost, Clemens A. Van Blitterswijk, and Klaas de Groot Porous "Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment," Biomaterials, 27(8), 1223-1235 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.033