Fabrication and Analysis of PLGA Nanofiber with poly-l-lysine for Adhesion and Expansion of Mesenchymal Stem Cell

중간엽줄기세포 부착 및 증식을 위한 poly-l-lysine 도입 PLGA 나노섬유 제조 및 분석

  • Kang, Gwang-Sik (Stem Cell Engineering Laboratory, Department of Biomedical Science, CHA University) ;
  • Cha, Byung-Hyun (Stem Cell Engineering Laboratory, Department of Biomedical Science, CHA University) ;
  • Park, Kwang-Sook (Stem Cell Engineering Laboratory, Department of Biomedical Science, CHA University) ;
  • Kim, Hee-Chun (Department of Orthopedic, CHA University) ;
  • Park, Han-Soo (School of Integrative Engineering, Chung-Ang University) ;
  • Park, Kwi-Deok (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Lee, Soo-Hong (Stem Cell Engineering Laboratory, Department of Biomedical Science, CHA University)
  • 강광식 (차의과학대학교 의생명과학과) ;
  • 차병현 (차의과학대학교 의생명과학과) ;
  • 박광숙 (차의과학대학교 의생명과학과) ;
  • 김희천 (차의과대학병원 정형외과) ;
  • 박한수 (중앙대학교 융합공학부 바이오메디컬공학과) ;
  • 박귀덕 (한국과학기술연구원 생체재료연구단) ;
  • 이수홍 (차의과학대학교 의생명과학과)
  • Published : 2013.06.01

Abstract

Cell-substrate interaction is fundamentally essential for phenotypic maintenance and multipotency of stem cells. To regulate the cell-substrate interaction, many researchers have tried to mimic the native cellular environment by introducing physical and chemical factors. Electrospinning technique is a useful tool to produce nanofibers with various diameters, porosities and structures like the native cellular physical environment. In electrospinning technique, however, most synthetic biodegradable polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA) and poly(lactic acid-co-glycolic acid) (PLGA) show low adhesion and proliferation of cells on them. Recently, poly-l-lysine (PLL) has been reported as a common coating material for the improvement of cell adhesion. In this study, we hypothesized that PLL introduction in PLGA nanofiber would enhance the adhesion and proliferation of human adipose-derived stem cells (hASCs). To aim this, we fabricated PLGA/PLL nanofiber by electrospinning and evaluated cellular behavior of hASCs on it. PLGA/PLL nanofiber significantly promoted the attachment and proliferation of hASCs without cytotoxicity. Thus, PLGA/PLL nanofiber would be a useful scaffold to enhance adhesion and proliferation of stem cells and presumably to regulate differentiation of them in tissue engineering field.

Keywords

References

  1. X. M. Mo, C. Y. Xu, M. Kotaki and S. Ramakrishna, "Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation," Biomaterials, 25, 1883-1890 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.042
  2. B. H. Choi, Y. S. Choi, D. G. Kang, B. J. Kim, Y. H. Song and H. J. Cha, "Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides," Biomaterials, 31, 8980-8988 (2010). https://doi.org/10.1016/j.biomaterials.2010.08.027
  3. H. M. Powell, D. M. Supp and S. T. Boyce, "Influence of electrospun collagen on wound contraction of engineered skin substitutes," Biomaterials, 29, 834-843 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.036
  4. E. Luong-Van, L. Grondahl, K. N. Chua, K. W. Leong, V. Nurcombe and S. M. Cool, "Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers," Biomaterials, 27, 2042-2050 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.028
  5. J. Stitzel, J. Liu, S. J. Lee, M. Komura, J. Berry, S. Soker, G. Lim, M. Van Dyke, R. Czerw, J. J. Yoo and A. Atala, "Controlled fabrication of a biological vascular substitute," Biomaterials, 27, 1088-1094 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.048
  6. J. K. Wise, A. L. Yarin, C. M. Megaridis and M. Cho, "Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage," Tissue Eng. Part A, 15, 913-921 (2009). https://doi.org/10.1089/ten.tea.2008.0109
  7. M. A. da Silva, A. Crawford, J. Mundy, A. Martins, J. V. Araujo, P. V. Hatton, R. L. Reis and N. M. Neves, "Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes," Tissue Eng. Part A, 15, 377-385 (2009). https://doi.org/10.1089/ten.tea.2007.0327
  8. M. S. Peach, R. James, U. S. Toti, M. Deng, N. L. Morozowich, H. R. Allcock, C. T. Laurencin and S. G. Kumbar, "Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells," Biomed. Mater., 7, 045016 (2012). https://doi.org/10.1088/1748-6041/7/4/045016
  9. K. N. Chua, C. Chai, P. C. Lee, Y. N. Tang, S. Ramakrishna, K. W. Leong and H. Q. Mao, "Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells," Biomaterials, 27, 6043-6051 (2006). https://doi.org/10.1016/j.biomaterials.2006.06.017
  10. N. G. Rim, J. H. Lee, S. I. Jeong, B. K. Lee, C. H. Kim and H. Shin, "Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers," Macromol. Biosci., 9, 795-804 (2009). https://doi.org/10.1002/mabi.200800358
  11. K. Pachmann and W. Leibold, "Insolubilization of protein antigens on polyacrylic plastic beads using poly-L-lysine," J. Immunol. Methods, 12, 81-89 (1976). https://doi.org/10.1016/0022-1759(76)90098-3
  12. S. Hong, P. R. Leroueil, E. K. Janus, J. L. Peters, M. M. Kober, M. T. Islam, B. G. Orr, J. R. Baker, Jr. and M. M. Banaszak Holl, "Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability," Bioconjug. Chem., 17, 728-734 (2006). https://doi.org/10.1021/bc060077y
  13. A. Mecke, I. J. Majoros, A. K. Patri, J. R. Baker, M. M. Holl, and B. G. Orr, "Lipid bilayer disruption by polycationic polymers: The roles of size and chemical functional group." Langmuir, 21, 10348-10354 (2005). https://doi.org/10.1021/la050629l
  14. S. Hong, A. U. Bielinska, A. Mecke, B. Keszler, J. L. Beals, X. Y. Shi, L. Balogh, B. G. Orr, J. R. Baker and Banaszak Holl, "Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport" Bioconjugate Chem., 15, 774-782 (2004). https://doi.org/10.1021/bc049962b
  15. L. X. Lu, X. F. Zhang, Y. Y. Wang, L. Ortiz, X. Mao, Z. L. Jiang, Z. D. Xiao and N. P. Huang, "Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo," ACS Appl. Mater. Interfaces, 5, 319-330 (2013). https://doi.org/10.1021/am302146w
  16. S. I. Jeong, S. Y. Kim, S. K. Cho, M. S. Chong, K. S. Kim, H. Kim, S. B. Lee and Y. M. Lee, "Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors," Biomaterials, 28, 1115-1122 (2007). https://doi.org/10.1016/j.biomaterials.2006.10.025
  17. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, "The effect of processing variables on the morphology of electrospun nanofibers and textiles," Polymer, 42, 261 (2001). https://doi.org/10.1016/S0032-3861(00)00250-0
  18. H. Fong, I. Chun, D. H. Reneker, "Beaded nanofibersformed during electrospinning," Polymer., 40, 4585-4592 (1999). https://doi.org/10.1016/S0032-3861(99)00068-3
  19. H. J. Sim and S. H. Lee, "아크릴의 전기방사시 방사조건이 웹 형성에 미치는 영향," J. Korean Fiber Soc., 41, 414 (2004).
  20. K. J. Park, "Stability of the Taylor cone-jet in electrospraying," 박사학위논문 서울대학교 대학원 P118 (2006).
  21. J. B. Ballengee, and P. N. Pintauro, "Morphological Control of Electrospun Nafion Nanofiber Mats," ECS Trans., 33, 647-658 (2010).
  22. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra and D. R. Lee, "Characterization of nanostructured poly(e-caprolactone) nonwoven mats via electrospinning," Polymer, 44, 1287-1294 (2003). https://doi.org/10.1016/S0032-3861(02)00820-0
  23. M. Kiremitci-gumusderelioglu and G. Deniz, "Synthesis, Characterization and in Vitro Degradation of Poly(DL-Lactide)/Poly(DLLactide- co-Glycolide) Films," Turk J. Chem., 23, 153-161 (1999).
  24. X. Li, Y. Su, S. Liu, L. Tan, X. Mo and S. Ramakrishna, "Encapsulation of proteins in poly(L-lactide-co-caprolactone) fibers by emulsion electrospinning," Colloids Surf. B Biointerfaces, 75, 418-424 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.014
  25. D. A. Hill, S. Chiosea, S. Jamaluddin, K. Roy, A. H. Fischer, D. D. Boyd, J. A. Nickerson and A. N. Imbalzano, " Inducible changes in cell size and attachment area due to expression of a mutant SWI/SNF chromatin remodeling enzyme," J. Cell Sci., 15, 5847- 5854 (2004).
  26. A. C. Hunter, "Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity," Adv. Drug Deliv. Rev., 58, 1523-1531 (2006). https://doi.org/10.1016/j.addr.2006.09.008
  27. D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein and T. Kissel, "In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis," Biomaterials, 24, 1121- 1131 (2003). https://doi.org/10.1016/S0142-9612(02)00445-3
  28. H. Kwon, Y. Seok, J. W. Rhie, G. Yoo, J. S. Lim, S. H. Chung and S. T. Ahn, "The Cytotoxicity of Poly-L-lysine in Different Concentration to Preadipocytes Harvested from Living Rats," J. Korean Soc. Plast. Reconstr. Surg., 27, 683-686 (2000).