DOI QR코드

DOI QR Code

Carbon, Nitrogen and Phosphorous Ratios of Zooplankton in the Major River Ecosystems

국내 주요 강 생태계 내 동물플랑크톤의 탄소, 질소, 인 비율 해석

  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Jeong, Kwang-Seuk (Institute of Environmental Technology & Industry, Pusan National University, Department of Biological Sciences, Pusan National University) ;
  • Kim, Dong-Kyun (Department of Physical & Environmental Sciences, University of Toronto) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University) ;
  • Lee, Jaeyong (Department of Environmental Science, Kwangwon National University) ;
  • Kim, Bomchul (Department of Environmental Science, Kwangwon National University)
  • 김현우 (순천대학교 사범대학 환경교육과) ;
  • 라긍환 (순천대학교 사범대학 환경교육과) ;
  • 정광석 (부산대학교 환경기술산업개발연구소, 부산대학교 자연과학대학 생명과학과) ;
  • 김동균 (토론토대학교 물리환경과학과) ;
  • 황순진 (건국대학교 생명환경과학대학 보건환경과학과) ;
  • 이재용 (강원대학교 자연과학대학 환경학과) ;
  • 김범철 (강원대학교 자연과학대학 환경학과)
  • Received : 2013.12.09
  • Accepted : 2013.12.15
  • Published : 2013.12.31

Abstract

The amounts of carbon (C), nitrogen (N) and phosphorus (P) in relation to dry weight (D.W.) were measured in zooplankton from the large four rivers (Han R., Geum R., Yeongsan R. and Seomjin R.) during 2004~2008. The stoichiometry of total zooplankton in four river systems was highly variable. The ranges of average C, N and P-contents were $70{\sim}620mgC\;mg^{-1}$ D.W., $7.1{\sim}85.5{\mu}gN\;mg^{-1}$ D.W. and $2.5{\sim}7.4{\mu}gP\;mg^{-1}$ D.W., respectively. The mean C :N: P atomic ratios reflected large spatial differences. The C : P and N : P ratios of the zooplankton community ranged from 38 to 392 : 1 and from 4 to 65 : 1 in all sampling sites. Self-Organizing Map (SOM) was applied to the survey data, and the study sites were clearly classified into 3 clusters. Clustering was largely affected by the distribution pattern of C, N, P-contents, which is related with characteristics of river systems on the basis of stoichiometry.

국내 주요 강 생태계 (한강, 금강, 영산강, 섬진강)에서 지난 2004년부터 2008년까지 총 동물플랑크톤의 탄소(C), 질소(N) 및 인(P) 함량에 대해 평가하였다. 동물플랑크톤의 건중량 당 C, N P-함량은 강 시스템별로 변화가 뚜렷하였다. 조사지점별 평균 C, N, 그리고 P-함량의 범위는 $70{\sim}620mgC\;mg^{-1}$ D.W., $7.1{\sim}85.5{\mu}gN\;mg^{-1}$ D.W. 그리고 $2.5{\sim}7.4{\mu}gP\;mg^{-1}$ D.W.인 것으로 파악되었다. 평균 탄소: 질소: 인 비율은 지점별 상이한 차이를 보였으며 전 지점의 평균은 200 : 29 : 1인 것으로 파악되었다. 전 조사지점에서의 동물플랑크톤 군집의 탄소: 인 그리고 질소: 인 비율의 범위는 각 각 38에서 392 : 1과 4에서 65 : 1이었다. 자가조직화지도(SOM)을 활용한 평면상 지점들의 배치 양상과 화학양론 자료들 간의 주요그룹 분석 결과 크게 세 클러스터로 구분되었다. 클러스터링 결과 동물플랑크톤의 C, N, P-함량은 공간적 이질성에 의해 영향을 받았으며, 화학량론 자료는 강 생태계의 환경 특성 해석에 활용성이 높은 것으로 사료되었다.

Keywords

References

  1. Andersen, T. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807-814. https://doi.org/10.4319/lo.1991.36.4.0807
  2. Chon, T.S., Y.S. Park and E.Y Cha. 2000. Patterning of community changes in bentic macroinvertebrates collected from urbanized streams for the short term prediction by temporal artificial neuronal networks. p. 99-114. In: Artificial Neuronal Networks: Application to Ecology and Evolution (Lek, S. and J.F. Guegan, eds.). Springer, Berlin.
  3. Darchambeau, F., I. Thys, B. Leporcq, L. Hoffmann and J.-P. Descy. 2005. Influence of zooplankton stoichiometry on nutrient sedimentation in a lake system. Limnology and Oceanography 50: 905-913. https://doi.org/10.4319/lo.2005.50.3.0905
  4. Elser, J.J., R.W. Sterner, E. Gorokhova, W.F. Fagan, T.A. Markow, J.B. Cotner, J.F. Harrison, S.E. Hobbie, G.M. Odell and L.J. Weider. 2000. Biological stoichiometry from genes to ecosytems. Ecology Letters 3: 540-550. https://doi.org/10.1046/j.1461-0248.2000.00185.x
  5. Ferrao-Filho, A.S., A.J. Tessir and W.R. DeMott. 2007. Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: Testing stoichiometric theory and the growth rate hypothesis. Limnology and Oceanography 52: 407-415. https://doi.org/10.4319/lo.2007.52.1.0407
  6. Garcia, H.L. and L.M. Gonzalez. 2004. Self-Organizing Map and clustering for wastewater treatment monitoring. Engineering Applications of Artificial Intelligence 17: 215-225. https://doi.org/10.1016/j.engappai.2004.03.004
  7. Giraudel, J.L. and S. Lek. 2001. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecological Modelling 146: 329-339. https://doi.org/10.1016/S0304-3800(01)00324-6
  8. Guegan, J.-F., S. Lek and T. Oberdorff. 1998. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391: 382-384. https://doi.org/10.1038/34899
  9. Jeong, K.-S., D.-K. Kim, A. Pattnaik, K. Bhatta, B. Bhandari and G.-J. Joo. 2008. Patterning limnological characteristics of the Chilika lagoon (India) using a self-organizing map. Limnology 9: 231-242. https://doi.org/10.1007/s10201-008-0243-7
  10. Kim, D.-K., G.-J. Joo, K.-S. Jeong, K.-H. Chang and H.-W. Kim. 2006. Patterning zooplankton dynamics in the regulated Nakdong River by means of the Self-Oragnizing Map. Korean Journal of Limnological Society 39: 52-61.
  11. Kim, D.K., K.S. Jeong, K.H. Chang, G.H. La, G.J. Joo and H.W. Kim. 2012. Patterning zooplankton communities in accordance with annual climatic conditions in a regulated river system (Nakdong River, South Korea). International Review of Hydrobiology 97: 55-72. https://doi.org/10.1002/iroh.201111428
  12. Kohonen, T. 1997. Self-Organizing Maps. Springer, New York.
  13. Lair, N. 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Research and Applications 22: 567-593. https://doi.org/10.1002/rra.923
  14. Lehman, J.T. 1980. Nutrient cycling as an interface between algae and grazers in freshwater communities. American Society of Limnology and Oceanography Special Symposia 3: 251-263.
  15. Omori, M. 1969. The biology of a sergestid shrimp Sergestes Zucens Hansen. Bulletin of the Ocean Research Institute, University of Tokyo.
  16. Redfield, A. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. p. 177-192. In: James Johnstone Memorial Volume (Daniel, R.J. ed.). University Press of Liverpool. Liverpool.
  17. Sterner, R.W. and J.J. Elser. 2002. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton Univ. Press.
  18. Sterner, R.W., T. Andersen, J.J. Elser, D.O. Hessen, J.M. Hood, E. Mccauley and J. Urabe. 2008. Scale-dependent carbon : nitrogen : phosphorous seston stoichiometry in marine and freshwaters. Limnology and Oceanography 53: 1169-1180. https://doi.org/10.4319/lo.2008.53.3.1169
  19. Varbiro, G., E. Acs, G. Borics, K. Erces, G. Feher, I. Grigorszky, T. Japport, G. Kocsis, E. Karsznai, K. Nagy, Z. Nagy-Laszlo, Z. Pilinszky and K.T. Kiss. 2007. Use of self-organizing maps (SOM) for characterization of riverine phytoplankton associations in Hungary. Archiv fur Hydrobiologie 161(Supplement): 388-394.