DOI QR코드

DOI QR Code

국내 중대형 인공호에서 외래종인 배스(Micropterus salmoides)의 분포 특성 및 서식지의 이화학적 수질

Distribution Characteristics of Largemouth Bass (Micropterus salmoides) as an Exotic Species, in Some Medium-to-Large Size Korean Reservoirs and Physico-chemical Water Quality in the Habitats

  • 김현맥 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 길지현 (국립환경과학원 자연평가연구팀) ;
  • 이의행 (한국농어촌공사 농어촌연구원) ;
  • 안광국 (충남대학교 생명시스템과학대학 생물과학과)
  • Kim, Hyun-Mac (Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Kil, Ji-Hyon (Ecosystem Assessment Division, National Institute of Environmental Research) ;
  • Lee, Eui-Haeng (Rural Research Institute, Korea Rural Community Corporation) ;
  • An, Kwang-Guk (Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University)
  • 투고 : 2013.11.06
  • 심사 : 2013.11.18
  • 발행 : 2013.12.31

초록

본 연구에서는 2011년 우리나라 10개의 중대형 인공호에서 배스의 우점도에 의한 외래종 영향 및 이에 대한 어류 군집 구조 분석을 실시하였고, 이들이 출현하는 호수에 대한 이화학적 수질특성을 분석하였다. 10개 인공호에서 출현한 어류는 13과 52종이었으며, 배스의 상대 풍부도는 전체 어종들 중 13%를 차지하여, 출현한 어류들 중 3번째로 높게 우점하는 것으로 나타났다. 이런 결과는 향후 배스가 수체내에서 최상위 포식자로서의 포식압 및 생태적 지위 특성 때문에 많은 인공호들에서는 본 배스의 외래종 번성에 의한 생태계 교란 효과가 극대화 될 수 있음을 제시하였다. 전체 조사 대상 인공호들 중 평택호에서 배스의 상대 풍부도는 60%로서 가장 높게 나타난 반면, 대청호에서 풍부도는 3%로서 가장 낮게 나타났다. 배스 서식지에 대한 이 화학적 수질분석 결과에 따르면, COD는 평균 $4.5{\pm}2.5mgL^{-1}$였고, 총인 (TP) 농도는 $0.058{\pm}0.047mgL^{-1}$, 총질소(TN)는 $2.2{\pm}1.4mgL^{-1}$로 나타났다. 인 (P)과 질소(N)의 농도 분석에 따르면, 평택호, 낙동강하구언, 주남저수지 등의 수체는 부영양화 현상이 높은 것으로 나타났다. 배스의 상대풍부도와 수질자료의 비교분석에 따르면, 두 변수는 통계학적으로 유의한 상관관계 (p>0.05)를 보이지 않았다. 즉, 배스의 분포 및 풍부도 특성은 이화학적 수질도 중요하겠지만, 이들보다는 여러 타 요인들, 즉, 물리적 서식지 특성, 이용 가능한 먹이양 및 경쟁생물의 밀도 등에 의해 더 영향 받을 것으로 추정되었다.

The objective of this study was to understand the distribution characteristics of largemouth bass as an exotic species in relation to water chemistry. The survey was conducted in 10 reservoirs in Korea that showed different properties in size, location and eutrophic state. Total number of fish species observed in the artificial reservoirs was 52 (13 family) and the relative abundance of the bass was 13% of the total, which is the third dominant species in the whole sample. The relative abundance of bass was the highest in the Pyungtak reservoir (60%), whereas the Daechung reservoir showed the lowest abundance (only 3%). Although no significance difference statistically were founded in the relationship between bass abundance and water quality parameters. The reservoir trophic state showed some relationships. As result, the higher abundance was observed in hypertrophic reservoirs that located in the esturine regions compared to other large and medium reservoirs classified as meso- or eutrphic state. In conclusion, bass distribution in the reservoir ecosystem can not be directly explained by water chemistry only but other environmental factors should be considered.

키워드

참고문헌

  1. Alien Species in Korea. 2011. National Institute of Environmental Research, pp. 271.
  2. Almeida, D., A. Almodovar, G.G. Nicola, B. Elvira and G.D. Grossman. 2012. Trophic plasticity of invasive juvenile largemouth bass Micropterus salmoides in Iberian streams. Fisheries Research 113(1): 153-158. https://doi.org/10.1016/j.fishres.2011.11.002
  3. An, K.G. and I.C. Shin. 2005. Influence of the asian monsoon on seasonal fluctuations of water quality in a mountainous stream. Korean Journal of Limnological Society 38(1): 54-62.
  4. An, K.G., J.W. Seo and S.S Park. 2001. Influences of seasonal rainfall on physical, chemical and biological conditions near the intake tower of Taechung reservoir. Korean Journal of Limnological Society 34(4): 327-336.
  5. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edition. EPA 841-B-99-002. US Environmental Protection Agency; Office of Water; Washington, DC.
  6. Bowman, D.W. 1993. Distribution and abundance of reintroduced smallmouth bass and native largemouth bass and spotted bass in relation to water quality in Beaver Reservoir. Arkansas-Oklahoma Chapters of the American Fisheries Society Joint Annual Meeting, February 16-18, 1993, Fort Smith, Arkansas. (Abstract only)
  7. Brown, T.G., B. Runciman, S. Pollard and A.D.A. Grant. 2009. Biological Synopsis of Largemouth Bass (Micropterus salmoides). Canadian Manuscript Report of Fisheries and Aquatic Sciences 2884.
  8. Findlay, C.S., D.G. Bert and L. Zheng. 2000. Effect of introduced piscivores on native minnow communities in Adirondack lakes. Canadian Journal of Fisheries and Aquatic Sciences 57(3): 570-580. https://doi.org/10.1139/f99-276
  9. Gray, J.S., R.S.S. Wu and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249-279. https://doi.org/10.3354/meps238249
  10. Han, J.H., J.Y. Lee and K.G. An. 2010. Interannual and seasonal variations of water quality in terms of size dimension on multi-purpose Korean Dam Reservoirs along with the characteristics of longitudinal gradients. Korean Journal of Limnological Society 43(2): 319-337.
  11. Hilll, J.E. and C.E. Cichra. 2005. Biological Synopsis of Five Selected Florida Centrarchid Fishes with an Emphasis on the Effects of Water Level Fluctuations, Water Supply Management Division St. Johns River Water Management District Palatka, Florida, pp.136.
  12. Hong, Y.P. and Y.M. Son. 2003. Studies on the interspecific association of community including Micropterus salmoides population, Introduced fish in Korea. Korean Journal of Ichthyology 15(1): 61-68.
  13. Hoyer, M.V. and D.E. Canfield, Jr. 1996. Largemouth bass abundance and aquatic vegetation in Florida lakes: An empirical analysis. Journal of Aquatic Plant Management 34: 23-32.
  14. Kim, B.S., K.H. Park, Y.K. Park, M.H. Joeng, A.S. You, Y.J. Yang, J.H. Choi, O.K. Kwon and Y.J. Ahn. 2008. Assessment of the health of fish species collected in agricultural reservoirs, AsanHo and NamyangHo. Korean Journal of Pesticide Science 12(1): 57-66.
  15. Kim, H.M., K.G. An and J.W. Choi. 2013. Ecosystem health diagnosis using integrative multiple eco-metric model approaches. Journal of Ecology and Environment 36(1): 73-83. https://doi.org/10.5141/ecoenv.2013.009
  16. Kim, I.S. and J.Y. Park. 2002. Freshwater Fishes of Korea. Kyohak Publishing Co., Ltd, Seoul, Rep. Korea. p. 1-465.
  17. Ko, M.H., J.Y. Park and Y.J. Lee. 2008. Feeding habits of an introduced large mouth bass, Micropterus salmoides (Perciformes; Centrachidae), and its influence on ichthyofauna in the Lake Okjeong. Korean Journal of Ichthyology 20(1): 36-44.
  18. Lasenby, T.A. and S.J. Kerr. 2000. Bass transfers and stocking: An annotated bibliography and literature review. Fish and Wildlife Branch, Ontario Ministry of Natural resources. Peterborough, Ontario. 207p. + appendices.
  19. Lee, W.O., H. Yang, S.W. Yoon and J.Y. Park. 2008. Study on the feeding habits of Micropterus salmoides in lake okjeong and lake yongdam. Korean Journal of Ichthyology 21(3): 200-207.
  20. Lee, W.O., I.R. Lee, H.Y. Song and I.C. Bang. 2008. Genetic differentiation of the largemouth bass Micropterus salmoides from the major rivers and reservoirs in Korea assessed by AFLP. Korean Journal of Limnology 41(3): 395-401.
  21. Shin, J.K., S.J. Hwang and K.J. Cho. 2003. Assessment of water quality in Pyeongtaek Reservoir and its main tributaries. Korean Journal of Limnological Society 36(1): 38-47.
  22. Tucker, H., W.E. Lynch and D.L. Johnson. 2000. Effect of prey availability and reservoir bacteria over-winter survival, growth and condition of young-of-year largemouth bass. Presented at the Black Bass Symposium, American Fisheries Society Annual Meeting, August 20-24, 2000, St. Louis, Missouri. (Abstract only)
  23. Wasserman, R.J., N.A. Strydom and O.L.F. Weyl. 2011. Diet of largemouth bass, Micropterus salmoides (Centrarchidae), an invasive alien in the lower reaches of an Eastern Cape river, South Africa. African Zoology 46(2): 378-386. https://doi.org/10.3377/004.046.0217
  24. Wheeler, A.P. and M.S. Allen. 2003. Habitat and diet partitioning between shoal bass and largemouth bass in the Chipola River, Florida. Transactions of the American Fisheries Society 132: 438-449. https://doi.org/10.1577/1548-8659(2003)132<0438:HADPBS>2.0.CO;2
  25. Welch, E.B. and T. Lindell. 1992. Nutrient limitation. p. 34-135. In: Ecological Effect of Wastewater, 2nd. Champman & Hall Press, London.
  26. Wetzel, R.G. 1990. Reservoir ecosystems: conclusions and speculations. p. 227-238. In: Reservoir Limnology: Ecological perspectives (Thornton, K.W. et al., eds.). John Wiley & Sons, New York.
  27. Yasunori, M. and M. Tadashi. 2003. Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan. Biological Conservation 109(1): 111-121. https://doi.org/10.1016/S0006-3207(02)00144-1
  28. Zaret, T.M. and R.T. Paine. 1973. Species introduction in a tropical lake. Science 182: 449-455. https://doi.org/10.1126/science.182.4111.449