DOI QR코드

DOI QR Code

Appropriate In Vitro Methods for Genotoxicity Testing of Silver Nanoparticles

  • 투고 : 2012.10.02
  • 심사 : 2012.12.06
  • 발행 : 2013.01.02

초록

Objectives We investigated the genotoxic effects of 40-59 nm silver nanoparticles (Ag-NPs) by bacterial reverse mutation assay (Ames test), in vitro comet assay and micronucleus (MN) assay. In particular, we directly compared the effect of cytochalasin B (cytoB) and rat liver homogenate (S9 mix) in the formation of MN by Ag-NPs. Methods Before testing, we confirmed that Ag-NPs were completely dispersed in the experimental medium by sonication (three times in 1 minute) and filtration ($0.2{\mu}m$ pore size filter), and then we measured their size in a zeta potential analyzer. After that the genotoxicity were measured and especially, S9 mix and with and without cytoB were compared one another in MN assay. Results Ames test using Salmonella typhimurium TA98, TA100, TA1535 and TA1537 strains revealed that Ag-NPs with or without S9 mix did not display a mutagenic effect. The genotoxicity of Ag-NPs was also evaluated in a mammalian cell system using Chinese hamster ovary cells. The results revealed that Ag-NPs stimulated DNA breakage and MN formation with or without S9 mix in a dose-dependent manner (from $0.01{\mu}g/mL$ to $10{\mu}g/mL$). In particular, MN induction was affected by cytoB. Conclusions All of our findings, with the exception of the Ames test results, indicate that Ag-NPs show genotoxic effects in mammalian cell system. In addition, present study suggests the potential error due to use of cytoB in genotoxic test of nanoparticles.

키워드

참고문헌

  1. Kirkland D, Aardema M, Henderson L, Muller L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 20054;584(1-2):1-256. https://doi.org/10.1016/j.mrgentox.2005.02.004
  2. Warheit DB, Donner EM. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines. Nanotoxicology 2010;4:409-413. https://doi.org/10.3109/17435390.2010.485704
  3. Ames BN, Lee FD, Durston WE. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA 1973;70(3):782-786. https://doi.org/10.1073/pnas.70.3.782
  4. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-- many questions, some answers. Mutat Res 2009;681(2-3):241-258. https://doi.org/10.1016/j.mrrev.2008.10.002
  5. Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, et al. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 2007;70(24):2071-2079. https://doi.org/10.1080/15287390701601251
  6. Oesch F, Landsiedel R. Genotoxicity investigations on nanomaterials. Arch Toxicol 2012;86(7):985-994. https://doi.org/10.1007/s00204-012-0838-y
  7. Olive PL, Frazer G, Banath JP. Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat Res 1993;136(1):130-136. https://doi.org/10.2307/3578650
  8. Godard T, Deslandes E, Lebailly P, Vigreux C, Poulain L, Sichel F, et al. Comet assay and DNA flow cytometry analysis of staurosporine- induced apoptosis. Cytometry 1999;36(2):117-122. https://doi.org/10.1002/(SICI)1097-0320(19990601)36:2<117::AID-CYTO5>3.0.CO;2-#
  9. Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011;721(1):27-73. https://doi.org/10.1016/j.mrgentox.2010.12.015
  10. Gonzalez L, Sanderson BJ, Kirsch-Volders M. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 2011;26(1):185-191. https://doi.org/10.1093/mutage/geq088
  11. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009;3(2):279-290. https://doi.org/10.1021/nn800596w
  12. Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, et al. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 2009;186(3): 166-173. https://doi.org/10.1016/j.toxlet.2008.11.019
  13. Falck GC, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalan J, et al. Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 2009;28(6-7):339-352. https://doi.org/10.1177/0960327109105163
  14. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 2011;83(8):1124-1132. https://doi.org/10.1016/j.chemosphere.2011.01.025
  15. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res 1983;113(3-4):173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  16. Bajpayee M, Pandey AK, Zaidi S, Musarrat J, Parmar D, Mathur N, et al. DNA damage and mutagenicity induced by endosulfan and its metabolites. Environ Mol Mutagen 2006;47(9):682-692. https://doi.org/10.1002/em.20255
  17. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175(1):184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  18. Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 2011;726(2): 129-135. https://doi.org/10.1016/j.mrgentox.2011.08.008
  19. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, et al. The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 2007;28(19): 2946-2958. https://doi.org/10.1016/j.biomaterials.2007.02.034
  20. Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, et al. Report from the in vitro micronucleus assay working group. Mutat Res 2003;540(2):153-163. https://doi.org/10.1016/j.mrgentox.2003.07.005
  21. Lorge E, Hayashi M, Albertini S, Kirkland D. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. I. Theoretical aspects. Mutat Res 2008;655 (1-2):1-3. https://doi.org/10.1016/j.mrgentox.2008.06.003
  22. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311(5761):622-627. https://doi.org/10.1126/science.1114397
  23. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008;3(3):145-150 https://doi.org/10.1038/nnano.2008.30
  24. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011;32(36):9810-9817. https://doi.org/10.1016/j.biomaterials.2011.08.085
  25. Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 2009;43(15):6046-6051. https://doi.org/10.1021/es900754q
  26. Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res 2012;745(1-2):4-10. https://doi.org/10.1016/j.mrgentox.2011.11.010
  27. Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 2011;85(7):743-750. https://doi.org/10.1007/s00204-010-0545-5
  28. Kim YJ, Yang SI, Ryu JC. Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol Cell Toxicol 2010;6(2):119-125. https://doi.org/10.1007/s13273-010-0018-1
  29. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twentyeight- day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2008;20(6):575-583. https://doi.org/10.1080/08958370701874663
  30. Doak SH, Manshian B, Jenkins GJ, Singh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 2012;745(1-2):104-111. https://doi.org/10.1016/j.mrgentox.2011.09.013
  31. Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P. In vitro mutagenicity assessment of aluminium oxide nanomaterials using the Salmonella/microsome assay. Toxicol In Vitro 2010 ;24(6):1871-1876. https://doi.org/10.1016/j.tiv.2010.07.004
  32. Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 2009;24(3):245-251. https://doi.org/10.1093/mutage/gep003
  33. Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Misra S, Hussain SM, et al. Evaluation of genotoxic effects of oral exposure to aluminum oxide nanomaterials in rat bone marrow. Mutat Res 2009;676(1-2):41-47. https://doi.org/10.1016/j.mrgentox.2009.03.004
  34. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;3(1):95-101. https://doi.org/10.1016/j.nano.2006.12.001
  35. Haynes P, Lambert TR, Mitchell ID. Comparative in-vivo genotoxicity of antiviral nucleoside analogues; penciclovir, acyclovir, ganciclovir and the xanthine analogue, caffeine, in the mouse bone marrow micronucleus assay. Mutat Res 1996;369(1-2):65-74. https://doi.org/10.1016/S0165-1218(96)90049-X
  36. Bao L, Chen S, Wu L, Hei TK, Wu Y, Yu Z, et al. Mutagenicity of diesel exhaust particles mediated by cell-particle interaction in mammalian cells. Toxicology 2007;229(1-2):91-100. https://doi.org/10.1016/j.tox.2006.10.007
  37. Ma YJ, Gu HC. Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro. J Mater Sci Mater Med 2007;18(11):2145-2149. https://doi.org/10.1007/s10856-007-3015-8
  38. Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, et al. Confounding experimental considerations in nanogenotoxicology. Mutagenesis 2009;24(4):285-293. https://doi.org/10.1093/mutage/gep010

피인용 문헌

  1. High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology vol.8, pp.3, 2013, https://doi.org/10.1021/nn404871p
  2. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles vol.5, pp.59, 2013, https://doi.org/10.1039/c5ra05889a
  3. Impact of nanosilver on various DNA lesions and HPRT gene mutations – effects of charge and surface coating vol.12, pp.None, 2013, https://doi.org/10.1186/s12989-015-0100-x
  4. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity vol.30, pp.4, 2013, https://doi.org/10.1093/mutage/gev020
  5. Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation vol.14, pp.4, 2013, https://doi.org/10.1007/s10311-016-0583-1
  6. Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation vol.14, pp.4, 2013, https://doi.org/10.1007/s10311-016-0586-y
  7. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio) vol.18, pp.10, 2016, https://doi.org/10.1007/s11051-016-3549-0
  8. Scientific opinion on the re‐evaluation of silver (E 174) as food additive vol.14, pp.1, 2013, https://doi.org/10.2903/j.efsa.2016.4364
  9. Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation vol.19, pp.6, 2013, https://doi.org/10.1007/s11051-017-3900-0
  10. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona vol.32, pp.5, 2017, https://doi.org/10.1093/mutage/gex028
  11. Morphological transformation induced by silver nanoparticles in a Balb/c 3T3 A31-1-1 mouse cell model to evaluate in vitro carcinogenic potential vol.32, pp.None, 2017, https://doi.org/10.5620/eht.e2017016
  12. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis vol.410, pp.6, 2018, https://doi.org/10.1007/s00216-017-0812-x
  13. Lack of Mutagenic Activity of Sulfur Nanoparticles in Micronucleus Test on L5178Y Cell Culture vol.12, pp.1, 2013, https://doi.org/10.1134/s1990519x18010078
  14. Evaluation of the Toxicity of Silver/Silica and Titanium Dioxide Particles in Mammalian Cells vol.61, pp.None, 2013, https://doi.org/10.1590/1678-4324-2018160667
  15. A Current Overview of the Biological and Cellular Effects of Nanosilver vol.19, pp.7, 2013, https://doi.org/10.3390/ijms19072030
  16. STUDY OF MUTAGENIC ACTIVITY NANO- AND MICROPARTICLES IN THE AMES TEST (SALMONELLA / MICROSOME) vol.98, pp.4, 2013, https://doi.org/10.18821/0016-9900-2019-98-4-455-460
  17. The effect of silver nanoparticles on the mutagenic and the genotoxic properties of the urban wastewater liquid sludges vol.26, pp.18, 2019, https://doi.org/10.1007/s11356-019-05225-8
  18. MUTAGENIC ACTIVITY OF NANOMATERIALS IN THE AMES TEST. LITERATURE REVIEW vol.98, pp.11, 2013, https://doi.org/10.18821/0016-9900-2019-98-11-1309-1320
  19. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity vol.50, pp.11, 2013, https://doi.org/10.1080/10643389.2019.1647028