The Theory and Application of Diffusive Gradient in Thin Film Probe for the Evaluation of Concentration and Bioavailability of Inorganic Contaminants in Aquatic Environments

박막분산탐침(diffusive gradient in thin film probe)의 수중 생물학적 이용가능한 중금속 측정 적용

  • Hong, Yongseok (Daegu University, College of Engineering, Department of Environmental Engineering)
  • 홍용석 (대구대학교 공과대학 환경공학과)
  • Published : 2013.09.30

Abstract

This review paper summarizes the theory, application, and potential drawbacks of diffusive gradient in thin film (DGT) probe which is a widely used in-situ passive sampling technique for monitoring inorganic contaminants in aquatic environments. The DGT probe employs a series of layers including a filter membrane, a diffusive hydrogel, and an ionic exchange resin gel in a plastic unit. The filter side is exposed to an aquatic environment after which dissolved inorganic contaminants, such as heavy metals and nuclides, diffuse through the hydrogel and are accumulated in the resin gel. After retrieval, the contaminants in the resin gel are extracted by strong acid or base and the concentrations are determined by analytical instruments. Then aqueous concentrations of the inorganic contaminants can be estimated from a mathematical equation. The DGT has also been used to monitor nutrients, such as ${PO_4}^{3-}$, in lakes, streams, and estuaries, which might be helpful in assessing eutrophic potential in aquatic environments. DGT is a robust in-situ passive sampling techniques for investigating bioavailability, toxicity, and speciation of inorganic contaminants in aquatic environments, and can be an effective monitoring tool for risk assessment.

Keywords

References

  1. Agbenin, J. O. and Welp, G. (2012). Bioavailability of Copper, Cadmium, Zinc, and Lead in Tropical Savanna Soils Assessed by Diffusive Gradient in Thin Films (DGT) and Ion Exchange Resin Membranes, Environmental Monitoring and Assessment, 184(4), pp. 2275-2284. https://doi.org/10.1007/s10661-011-2116-5
  2. Bade, R., Oh, S., and Shin, W. S. (2012). Diffusive Gradients in Thin Films (DGT) for the Prediction of Bioavailability of Heavy Metals in Contaminated Soils to Earthworm (Eisenia foetida) and Oral Bioavailable Concentrations, Science of the Total Environment, 416, pp. 127-136. https://doi.org/10.1016/j.scitotenv.2011.11.007
  3. Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., and Sizmur, T. (2011). A Review of Biochars' Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils, Environmetal Pollution, 159(12), pp. 3269-3282. https://doi.org/10.1016/j.envpol.2011.07.023
  4. Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T., and Jolley, D. F. (2010). New Diffusive Gradients in a Thin Film Technique for Measuring Inorganic Arsenic and Selenium (IV) using a Titanium Dioxide based Adsorbent, Analytical Chemistry, 82(17), pp. 7401-7407. https://doi.org/10.1021/ac101543p
  5. Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T., and Jolley, D. F. (2011). Speciation of Dissolved Inorganic Arsenic by Diffusive Gradients in Thin Films: Selective Binding of As-III by 3-Mercaptopropyl-Functionalized Silica Gel, Analytical Chemistry, 83(21), pp. 8293-8299. https://doi.org/10.1021/ac202119t
  6. Black, A., McLaren, R. G., Reichman, S. M., Speir, T. W., and Condron, L. M. (2011). Evaluation of Soil Metal Bioavailability Estimates using Two Plant Species (L. perenne and T. aestivum) Grown in a Range of Agricultural Soils Treated with Biosolids and Metal Salts, Environmental Pollution, 159(6), pp. 1523-1535. https://doi.org/10.1016/j.envpol.2011.03.004
  7. Burton, E. D., Bush, R. T., and Sullivan, L. A. (2006). Acid-Volatile Sulfide Oxidation in Coastal Flood Plain Drains: Iron-Sulfur Cycling and Effects on Water Quality, Environmental Science and Technology, 40(4), pp. 1217-1222. https://doi.org/10.1021/es0520058
  8. Canavan, R. W., Van Cappellen, P., Zwolsman, J. J. G., van den Berg, G. A., and Slomp, C. P. (2007). Geochemistry of Trace Metals in a Fresh Water Sediment: Field Results and Diagenetic Modeling, Science of the Total Environment, 381, pp. 263-279. https://doi.org/10.1016/j.scitotenv.2007.04.001
  9. Chang, L. Y., Davison, W., Zhang, H., and Kelly, M. (1998). Performance Characteristics for the Measurement of Cs and Sr by Diffusive Gradients in Thin Films (DGT), Analytica Chimica Acta, 368(3), pp. 243-253. https://doi.org/10.1016/S0003-2670(98)00215-3
  10. Chapman, P. M., Wang, F., Adams, W. J., and Green, A. (1999). Appropriate Applications of Sediment Quality Values for Metals and Metalloids, Environmental Science and Technology, 33(22), pp. 3937-3941. https://doi.org/10.1021/es990083n
  11. Clarisse, O., Dimock, B., Hintelmann, H., and Best, E. P. H. (2011). Predicting Net Mercury Methylation in Sediments Using Diffusive Gradient in Thin Films Measurements, Environmental Science and Technology, 45(4), pp. 1506-1512. https://doi.org/10.1021/es102730n
  12. Clarisse, O., Foucher, D., and Hintelmann, H. (2009). Methylmercury Speciation in the Dissolved Phase of a Stratified Lake using the Diffusive Gradient in Thin Film Technique, Environmental Pollution, 157(3), pp. 987-993. https://doi.org/10.1016/j.envpol.2008.10.012
  13. Clarisse, O. and Hintelmann, H. (2006). Measurements of Dissolved Methylmercury in Natural Waters using Diffusive Gradients in Thin Film (DGT), Journal of Environmental Monitoring, 8(12), pp. 1242-1247. https://doi.org/10.1039/b614560d
  14. Clarisse, O., Lotufo, G. R., Hintelmann, H., and Best, E. P. H. (2012). Biomonitoring and Assessment of Monomethylmercury Exposure in Aqueous Systems using the DGT Technique, Science of the Total Environment, 416, pp. 449-454. https://doi.org/10.1016/j.scitotenv.2011.11.077
  15. Davison, W. and Zhang, H. (1994). In-Situ Speciation Measurements of Trace Components in Natural-Waters Using Thin- Film Gels, Nature, 367(6463), pp. 546-548. https://doi.org/10.1038/367546a0
  16. Davison, W. and Zhang, H. (2012). Progress in Understanding the Use of Diffusive Gradients in Thin Films (DGT) - Back to Basics, Environmental Chemistry, 9(1), pp. 1-13. https://doi.org/10.1071/EN11084
  17. Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., and Santore, R. C. (2001). Biotic Ligand Model of the Acute Toxicity of Metals, 1. Technical basis, Environmental Toxicology and Chemistry, 20(10), pp. 2383-2396. https://doi.org/10.1002/etc.5620201034
  18. Di Toro, D. M., McGrath, J. A., Hansen, D. J., Berry, W. J., Paquin, P. R., Mathew, R., Wu, K. B., and Santore, R. C. (2005). Predicting Sediment Metal Toxicity using a Sediment Biotic Ligand Model: Methodology and Initial Application, Environmental Toxicology and Chemistry, 24(10), pp. 2410-2427. https://doi.org/10.1897/04-413R.1
  19. Ding, S., Jia, F., Xu, D., Sun, Q., Zhang, L., Fan, C., and Zhang, C. (2011). High-resolution, Two-dimensional Measurement of Dissolved Reactive Phosphorus in Sediments using the Diffusive Gradients in Thin Films Technique in Combination with a Routine Procedure, Environmental Science and Technology, 45(22), pp. 9680-9686. https://doi.org/10.1021/es202785p
  20. Ding, S., Xu, D., Sun, Q., Yin, H., and Zhang, C. (2010). Measurement of Dissolved Reactive Phosphorus using the Diffusive Gradients in Thin Films Technique with a Highcapacity Binding Phase, Environmental Science and Technology, 44(21), pp. 8169-8174. https://doi.org/10.1021/es1020873
  21. Di Toro, D., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., and Ankley, G. T. (1992). Acid Volatile Sulfide Predicts the Acute Toxicity of Cadmium and Nickel in Sediments, Environmental Science and Technology, 26(1), pp. 96-101. https://doi.org/10.1021/es00025a009
  22. Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., and Redmond, M. S. (1990). Toxicity of Cadmium in Sediments - the Role of Acid Volatile Sulfide, Environmental Toxicology and Chemistry, 9(12), pp. 1487-1502. https://doi.org/10.1002/etc.5620091208
  23. Docekalova, H. and Divis, P. (2005). Application of Diffusive Gradient in Thin Films Technique (DGT) to Measurement of Mercury in Aquatic Systems, Talanta, 65(5), pp. 1174-1178. https://doi.org/10.1016/j.talanta.2004.08.054
  24. Dunn, R. J., Teasdale, P. R., Warnken, J., Jordan, M. A., and Arthur, J. M. (2007). Evaluation of the In-situ, Timeintegrated DGT Technique by Monitoring Changes in Heavy Metal Concentrations in Estuarine Waters, Environmental Pollution, 148(1), pp. 213-220. https://doi.org/10.1016/j.envpol.2006.10.027
  25. Dunn, R. J., Teasdale, P. R., Warnken, J., and Schleich, R. R. (2003). Evaluation of the Diffusive Gradient in a Thin Film Technique for Monitoring Trace Metal Concentrations in Estuarine Waters, Environmental Science and Technology, 37(12), pp. 2794-2800. https://doi.org/10.1021/es026425y
  26. Duquene, L., Vandenhove, H., Tack, F., Van Hees, M., and Wannijn, J. (2010). Diffusive Gradient in Thin Films (DGT) Compared with Soil Solution and Labile Uranium Fraction for Predicting Uranium Bioavailability to Ryegrass, Journal of Environmental Radioactivity, 101, pp. 140-147. https://doi.org/10.1016/j.jenvrad.2009.09.007
  27. Ernstberger, H., Davison, W., Zhang, H., Tye, A., and Young, S. (2002). Measurement and Dynamic Modeling of Trace Metal Mobilization in Soils using DGT and DIFS, Environmental Science and Technology, 36(3), pp. 349-354. https://doi.org/10.1021/es010917d
  28. Ernstberger, H., Zhang, H., Tye, A., Young, S., and Davison, W. (2005). Desorption Kinetics of Cd, Zn, and Ni Measured in Soils by DGT, Environmental Science and Technology, 39(6), pp. 1591-1597. https://doi.org/10.1021/es048534d
  29. Ferreira, D., Ciffroy, P., Tusseau-Vuillemin, M. H., Bourgeault, A., and Garnier, J. M. (2013). DGT as Surrogate of Biomonitors for Predicting the Bioavailability of Copper in Freshwaters: an Ex-situ Validation Study, Chemosphere, 91(3), pp. 241-247. https://doi.org/10.1016/j.chemosphere.2012.10.016
  30. Garmo, O. A., Davison, W., and Zhang, H. (2008). Interactions of Trace Metals with Hydrogels and Filter Membranes Used in DET and DGT Techniques, Environmental Science and Technology, 42(15), pp. 5682-5687. https://doi.org/10.1021/es800143r
  31. Ghosh, U., Luthy, R. G., Cornelissen, G., Werner, D., and Menzie, C.A. (2011). In-situ Sorbent Amendments: a New Direction in Contaminated Sediment Management, Environmental Science and Technology, 45(4), pp. 1163-1168. https://doi.org/10.1021/es102694h
  32. Gimpel, J., Zhang, H., Davison, W., and Edwards, A. C. (2002). In Situ Trace Metal Speciation in Lake Surface Waters Using DGT, Dialysis, and Filtration, Environmental Science and Technology, 37(1), pp. 138-146.
  33. Giusti, L. and Barakat, S. (2005). The Monitoring of Cr(III) and Cr(VI) in Natural Water and Synthetic Solutions: An Assessment of the Performance of the DGT and DET Methods, Water Air and Soil Pollution, 161, pp. 313-334. https://doi.org/10.1007/s11270-005-4719-3
  34. Hamilton-Taylor, J., Smith, E. J., Davison, W., and Sugiyama, M. (2005). Resolving and Modeling the Effects of Fe and Mn Redox Cycling on Trace Metal Behavior in a Seasonally Anoxic Lake, Geochimica Cosmochimica Acta, 69(8), pp. 1947-1960. https://doi.org/10.1016/j.gca.2004.11.006
  35. Harper, M. P., Davison, W., and Tych, W. (2000). DIFS - a Modelling and Simulation Tool for DGT Induced Trace Metal Remobilisation in Sediments and Soils, Environmental Modelling and Software, 15(1), pp. 55-66. https://doi.org/10.1016/S1364-8152(99)00027-4
  36. Harper, M. P., Davison, W., Zhang, H., and Tych, W. (1998). Kinetics of Metal Exchange Between Solids and Solutions in Sediments and Soils Interpreted from DGT Measured Fluxes, Geochimica Cosmochimica Acta, 62(16), pp. 2757-2770. https://doi.org/10.1016/S0016-7037(98)00186-0
  37. Hong, Y. S., Kinney, K. A., and Reible, D. D. (2011a). Acid Volatile Sulfides Oxidation and Metals (Mn, Zn) Release upon Sediment Resuspension: Laboratory Experiment and Model Development, Environmental Toxicology and Chemistry, 30(8), pp. 564-575. https://doi.org/10.1002/etc.411
  38. Hong, Y. S., Kinney, K. A., and Reible, D. D. (2011b). Effects of Cyclic Changes in pH and Salinity on Metals Release from Sediments, Environmental Toxicology and Chemistry, 30(3), pp. 1775-1784. https://doi.org/10.1002/etc.584
  39. Hong, Y. S., Rifkin, E., and Bouwer, E. J. (2011). Combination of Diffusive Gradient in a Thin Film Probe and IC-ICP-MS for the Simultaneous Determination of $CH_3Hg^+$ and $Hg^{2+}$ in Oxic Water, Environmental Science and Technology, 45(15), pp. 6429-6436. https://doi.org/10.1021/es200398d
  40. Hooda, P. S., Zhang, H., Davison, W., and Edwards, A. C. (1999). Measuring Bioavailable Trace Metals by Diffusive Gradients in Thin Films (DGT): Soil Moisture Effects on Its Performance in Soils, European Journal of Soil Science, 50(2), pp. 285-294. https://doi.org/10.1046/j.1365-2389.1999.00226.x
  41. Jansen, B., Kotte, M. C., van Wijk, A. J., and Verstraten, J.M. (2001). Comparison of Diffusive Gradients in Thin Films and Equilibrium Dialysis for the Determination of Al, Fe(III) and Zn Complexed with Dissolved Organic Matter, Science of the Total Environment, 277, pp. 45-55. https://doi.org/10.1016/S0048-9697(01)00911-1
  42. Kim, H. J., Yang, J. E., Lee, J. Y., Choi, S. I., and Jun, S. H. (2003). Fraction of Soil Pollution Assessment Index of Heavy Metals in Cultivated Land Soils Near the Abandoned Mine, Korean Society of Soil and Groundwater Environment, 8(4), pp. 53-63. [Korean Literature]
  43. Lam, B. and Simpson, A. J. (2006). Passive Sampler for Dissolved Organic Matter in Freshwater Environments, Analytical Chemistry, 78(24), pp. 8194-8199. https://doi.org/10.1021/ac0608523
  44. Lampert, D. J., Sarchet, W. V., and Reible, D. D. (2011). Assessing the Effectiveness of Thin-Layer Sand Caps for Contaminated Sediment Management through Passive Sampling, Environmental Science and Technology, 45(19), pp. 8437-8443. https://doi.org/10.1021/es200406a
  45. Lee, J. Y. (2008). A Review on Occurrence, Health Risk and Mitigation Measure of Uranium, Radium and Radon in Groundwater, Journal of the Geological Society of Korea, 44. pp. 341-352. [Korean Literature]
  46. Levy, J. L., Zhang, H., Davison, W., Galceran, J., Puy, J. (2012). Kinetic Signatures of Metals in the Presence of Suwannee River Fulvic Acid, Environmental Science and Technology, 46(6), pp. 3335-3342. https://doi.org/10.1021/es2043068
  47. Li, W. J., Wang, F. Y., Zhang, W. H., Evans, D. (2009). Measurement of Stable and Radioactive Cesium in Natural Waters by the Diffusive Gradients in Thin Films Technique with New Selective Binding Phases, Analytical Chemistry, 81(14), pp. 5889-5895. https://doi.org/10.1021/ac9005974
  48. Li, W. J., Zhao, J. J., Li, C. S., Kiser, S., and Cornett, R. J. (2006). Speciation Measurements of Uranium in Alkaline Waters using Diffusive Gradients in Thin Films Technique, Analytica Chimica Acta, 575(2), pp. 274-280. https://doi.org/10.1016/j.aca.2006.05.092
  49. Liu, J., Feng, X., Qiu, G., Anderson, C. W. N., and Yao, H. (2012). Prediction of Methyl Mercury Uptake by Rice Plants (Oryza sativa L.) Using the Diffusive Gradient in Thin Films Technique, Environmental Science and Technology, 46(20), pp. 11013-11020. https://doi.org/10.1021/es302187t
  50. Lofts, S., Spurgeon, D. J., Svendsen, C., and Tipping, E. (2004). Deriving Soil Critical Limits for Cu, Zn, Cd, and Pb: A Method Based on Free Ion Concentrations, Environmental Science and Technology, 38(13), pp. 3623-3631. https://doi.org/10.1021/es030155h
  51. Mahony, J. D., Di Toro, D. M., Gonzalez, A. M., Curto, M., Dilg, M., DeRosa, L. D., and Sparrow, L. A. (1996). Partitioning of Metals to Sediment Organic Carbon, Environmental Toxicology and Chemistry, 15(12), pp. 2187-2197. https://doi.org/10.1002/etc.5620151213
  52. Mason, R., Bloom, N., Cappellino, S., Gill, G., Benoit, J., and Dobbs, C. (1998). Investigation of Porewater Sampling Methods for Mercury and Methylmercury, Environmental Science and Technology, 32(24), pp. 4031-4040. https://doi.org/10.1021/es980377t
  53. Merritt, K. A. and Amirbahman, A. (2006). Mercury Mobilization in Estuarine Sediment Porewaters: A Diffusive Gel Time-Series Study, Environmental Science and Technology, 41(3), 717-722.
  54. Monbet, P., McKelvie, I. D., and Worsfold, P. J. (2008). Combined Gel Probes for the in Situ Determination of Dis solved Reactive Phosphorus in Porewaters and Characterization of Sediment Reactivity, Environmental Science and Technology, 42(14), pp. 5112-5117. https://doi.org/10.1021/es8001663
  55. Naylor, C., Davison, W., Motelica-Heino, M., Van Den Berg, G. A., and Van Der Heijdt, L. M. (2004). Simultaneous Release of Sulfide with Fe, Mn, Ni and Zn in Marine Harbour Sediment Measured using a Combined Metal/sulfide DGT Probe, Science of the Total Environment, 328, pp. 275-286. https://doi.org/10.1016/j.scitotenv.2004.02.008
  56. Niyogi, S. and Wood, C. M. (2004). Biotic Ligand Model, a Flexible Tool for Developing Site-specific Water Quality Guidelines for Metals, Environmental Science and Technology, 38(23), pp. 6177-6192. https://doi.org/10.1021/es0496524
  57. Nowack, B., Koehler, S., and Schulin, R. (2004). Use of Diffusive Gradients in Thin Films (DGT) in Undisturbed Field Soils, Environmental Science and Technology, 38(4), pp. 1133-1138. https://doi.org/10.1021/es034867j
  58. National Research Council (NRC). (2001). A Risk Management Strategy for PCB-Contaminated Sediments. Committee on Remediation of PCB-Contaminated Sediments, Board on Environmental Studies and Toxicology, Division on Life and Earth Studies, National Research Council, The National Academies Press, Washington, D.C.
  59. National Research Council (NRC). (2003). Bioavailability of Contaminants in Soils and Sediments:Processes, Tools, and Applications, Committee on Bioavailability of Contaminants in Soils and Sediments, National Research Council, The National Academies Press, Washington, D.C.
  60. Oh, K. H., Yu, M. N., and Cho, Y. C. (2011) Physicochemical characteristics and analysis of pollution potential in the sediments of the rivers flowing into the Saemangeum reservoir, Korean Society of Environmental Engineers, 33, pp. 861-867. [Korean Literature] https://doi.org/10.4491/KSEE.2011.33.12.861
  61. Panther, J. G., Teasdale, P. R., Bennett, W. W., Welsh, D. T., and Zhao, H. (2010). Titanium Dioxide-based DGT Technique for in Situ Measurement of Dissolved Reactive Phosphorus in Fresh and Marine Waters, Environmental Science and Technology, 44(24), pp. 9419-9424. https://doi.org/10.1021/es1027713
  62. Perez, A. L. and Anderson, K. A. (2009). DGT Estimates Cadmium Accumulation in Wheat and Potato from Phosphate Fertilizer Applications, Science of the Total Environment, 407(18), pp. 5096-5103. https://doi.org/10.1016/j.scitotenv.2009.05.045
  63. Rearick, M. S., Gilmour, C. C., Heyes, A., and Mason, R. P. (2005). Measuring Sulfide Accumulation in Diffusive Gradients in Thin Films by Means of Purge and Trap Followed by Ionselective Electrode, Environmental Toxicology and Chemistry, 24(12), pp. 3043-3047. https://doi.org/10.1897/05-061R.1
  64. Reynolds, C. S. and Davies, P. S. (2001). Sources and Bioavailability of Phosphorus Fractions in Freshwaters: a British Perspective, Biological Reviews of the Cambridge Philosophical Society, 76(1), pp. 27-64. https://doi.org/10.1017/S1464793100005625
  65. Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E., and Meyer, J. S. (2001). Biotic Ligand Model of the Acute Toxicity of Metals. 2. Application to Acute Copper Toxicity in Freshwater Fish and Daphnia, Environmental Toxicology and Chemistry, 20(10), pp. 2397-2402. https://doi.org/10.1897/1551-5028(2001)020<2397:BLMOTA>2.0.CO;2
  66. Scally, S., Davison, W., and Zhang, H. (2003). In Situ Measurements of Dissociation Kinetics and Labilities of Metal Complexes in Solution Using DGT, Environmental Science and Technology, 37(7), pp. 1379-1384. https://doi.org/10.1021/es0202006
  67. Scally, S., Davison, W., and Zhang, H. (2006). Diffusion Coefficients of Metals and Metal Complexes in Hydrogels used in Diffusive Gradients in Thin Films, Analytica Chimica Acta, 558, pp. 222-229. https://doi.org/10.1016/j.aca.2005.11.020
  68. Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., and Harms, H. (2004). Peer Reviewed: Defining Bioavailability and Bioaccessibility of Contaminated Soil and Sediment is Complicated, Environmental Science and Technology, 38(12), pp. 228A-231A. https://doi.org/10.1021/es040548w
  69. Stumm, W. and Morgan, J. J. (1996). Aquatic Chemistry : Chemical Equilibria and Rates in Natural Waters, 3rd ed. Wiley, New York.
  70. Turner, G. S. C., Mills, G. A., Teasdale, P. R., Burnett, J. L., Amos, S., and Fones, G. R. (2012). Evaluation of DGT Techniques for Measuring Inorganic Uranium Species in Natural Waters: Interferences, Deployment Time and Speciation, Analytica Chimica Acta, 739(0), pp. 37-46. https://doi.org/10.1016/j.aca.2012.06.011
  71. Tusseau-Vuillemin, M. H., Gilbin, R., and Taillefert, M. (2003). A Dynamic Numerical Model To Characterize Labile Metal Complexes Collected with Diffusion Gradient in Thin Films Devices, Environmental Science and Technology, 37(8), pp. 1645-1652. https://doi.org/10.1021/es025839o
  72. U.S. Environmental Protection Agency (USEPA). (2005). Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protectrion of Benthic Organisms : Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc), U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Harragansett, RI.
  73. Warnken, K. W., Davison, W., Zhang, H., Galceran, J.,and Puy, J. (2007). In Situ Measurements of Metal Complex Exchange Kinetics in Freshwater, Environmental Science and Technology, 41(9), pp. 3179-3185. https://doi.org/10.1021/es062474p
  74. Windom, H., Smith, R., Niencheski, F., and Alexander, C. (2000). Uranium in Rivers and Estuaries of Globally Diverse, Smaller Watersheds, Marine Chemistry, 68(4), pp. 307-321. https://doi.org/10.1016/S0304-4203(99)00086-9
  75. Zhang, H. and Davison, W. (1995). Performance-Characteristics of Diffusion Gradients in Thin-Films for the in-Situ Measurement of Trace-Metals in Aqueous-Solution, Analytical Chemistry, 67(19), pp. 3391-3400. https://doi.org/10.1021/ac00115a005
  76. Zhang, H. and Davison, W. (1999). Diffusional Characteristics of Hydrogels used in DGT and DET Techniques, Analytica Chimica Acta, 398, pp. 329-340. https://doi.org/10.1016/S0003-2670(99)00458-4
  77. Zhang, H. and Davison, W. (2000). Direct in Situ Measurements of Labile Inorganic and Organically Bound Metal Species in Synthetic Solutions and Natural Waters using Diffusive Gradients in Thin Films, Analytical Chemistry, 72(18), pp. 4447-4457. https://doi.org/10.1021/ac0004097
  78. Zhang, H., Davison, W., Gadi, R., K. and obayashi, T. (1998). In Situ Measurement of Dissolved Phosphorus in Natural Waters Using DGT, Analytica Chimica Acta, 370(1), pp. 29-38. https://doi.org/10.1016/S0003-2670(98)00250-5
  79. Zhang, H., Davison, W., Miller, S., and Tych, W. (1995). In situ High Resolution Measurements of Fluxes of Ni, Cu, Fe, and Mn and Concentrations of Zn and Cd in Porewaters by DGT, Geochimica Cosmochimica Acta, 59(20), pp. 4181-4192. https://doi.org/10.1016/0016-7037(95)00293-9