DOI QR코드

DOI QR Code

전기도금법으로 만든 니켈-티타니아 복합체에서 초음파 처리가 도금층에 미치는 영향 연구

A study of the effects on the composition of the electrodeposited Ni-TiO2 composite with the ultrasonic treatment

  • 김명진 (한국원자력연구원 원자력재료기술개발부) ;
  • 김정수 (한국원자력연구원 원자력재료기술개발부) ;
  • 김동진 (한국원자력연구원 원자력재료기술개발부) ;
  • 김홍표 (한국원자력연구원 원자력재료기술개발부) ;
  • 황성식 (한국원자력연구원 원자력재료기술개발부)
  • Kim, Myong-Jin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Joung Soo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong Jin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hong Pyo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Hwang, Seong Sik (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2013.07.30
  • 심사 : 2013.08.21
  • 발행 : 2013.08.31

초록

In the present study, $Ni-TiO_2$ composite coatings were electrodeposited in a sulfamate bath containing $TiO_2$ particles. The influence of the ultrasonic treatment on the co-deposition of $TiO_2$ particles in the coating and the hardness of the electrodeposited $Ni-TiO_2$ composite has been investigated. Three different ultrasonic treatments (pretreatment before the electrodeposition (pre-UT), pretreatment + applied during the electrodeposition (UT), and the electrodeposition without the ultrasonic treatment (w/o UT)) were performed. The $Ni-TiO_2$ composite coatings are characterized using scanning electron microscopy (SEM), image analyzer, and hardness tester. Comparison of results indicates that the volume fraction is more important factor than the agglomerated particle size in terms of the strength improvement, and the strength of the electrodeposited $Ni-TiO_2$ composite coatings is enhanced with pre-UT condition.

키워드

참고문헌

  1. G. Palumbo, F. Gonzalez, A.M. Brennenstuhl, U. Erb, W. Shmayda, P.C. Lichtenberger, Nanostruct. Mater., 9, 737 (1997). https://doi.org/10.1016/S0965-9773(97)00160-8
  2. D. J. Kim, M. J. Kim, J. S. Kim, H. P. Kim, Surf. Coating Tech., 202, 2519 (2008). https://doi.org/10.1016/j.surfcoat.2007.09.027
  3. A. Hovestad, L. J. J. Janssen, J. Appl. Electrochem., 25, 519 (1995). https://doi.org/10.1007/BF00573209
  4. S. Steinhauser and B. Wielage, Surf. Eng., 13(4), 289 (1997). https://doi.org/10.1179/sur.1997.13.4.289
  5. C. T. J. Low, R. G. A. Wills, F. C. Walsh, Surf. Coating Tech., 201, 371 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.123
  6. W. Chen, Y. He, W. Gao, Surf. Coating Tech., 204, 2487 (2010). https://doi.org/10.1016/j.surfcoat.2010.01.036
  7. P. K. Sinha, N. Dhananjayan, H. K. Chakrabarti, Plating, (1973).
  8. H.-R. Sinning, G. Vidrich, W. Riehemann, Acta Materialia, 59, 4504 (2011). https://doi.org/10.1016/j.actamat.2011.03.073
  9. J. Zahavi, J. Hazan, Plating and Surface Finishing, 57 (1983).
  10. A. Moller, H. Hahn, Nanostructured Materials, 12, 259 (1999). https://doi.org/10.1016/S0965-9773(99)00112-9
  11. M. Verelst, J. P. Bonino, A. Rousset, Mater. Sci. Eng. A, 135, 51 (1991). https://doi.org/10.1016/0921-5093(91)90536-V
  12. S. A. Lajevardi, T. Shahrabi, Appl. Surf. Sci., 256, 6775 (2010). https://doi.org/10.1016/j.apsusc.2010.04.088
  13. S. A. Lajevardi, T. Shahrabi, J. A. Szpunar, Appl. Surf. Sci., 279, 180 (2013). https://doi.org/10.1016/j.apsusc.2013.04.067
  14. S. -L. Kuo, Y. -C. Chen, M. -D. Ger, W. -H. Hwu, Mater. Chem. Phys., 86, 5 (2004). https://doi.org/10.1016/j.matchemphys.2003.11.040
  15. F. Hou, W. Wang, H. Guo, Appl. Surf. Sci., 252, 3812 (2006). https://doi.org/10.1016/j.apsusc.2005.05.076
  16. L. Chen, L. Wang, Z. Zeng, J. Zhang, Mater. Sci. Eng. A, 434, 319 (2006). https://doi.org/10.1016/j.msea.2006.06.098
  17. T. Lampke, A. Leopold, D. Dietrich, G. Alisch, B. Wielage, Surf. Coating Tech., 201, 3510 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.073
  18. G. Parida, D. Chaira, M. Chopkar, A. Basu, Surf. Coating Tech., 205, 4871 (2011). https://doi.org/10.1016/j.surfcoat.2011.04.102
  19. G. Gyawali, S. H. Cho, D. Woo, S. W. Lee, Kor. J. Mater. Res., 20, 439 (2010). https://doi.org/10.3740/MRSK.2010.20.8.439
  20. D. Dietrich, I. Scharf, D. Nickel, L. Shi, T. Grund, T. Lampke, J. Solid State Electrochem. 15, 1041 (2011). https://doi.org/10.1007/s10008-011-1348-1
  21. G. E. Dieter, Mechanical Metallurgy 3rd edition, chap. 3, McGraw-Hill (1986).
  22. Kenneth S. Suslick, Ultrasound, chap. 1, VCH (1988).
  23. F. Erler, C. Jakob, H. Romanus, L. Spiess, B. Wielage, T. Lampke, S. Steinhauser, Electrochim. Acta, 48, 3063 (2003). https://doi.org/10.1016/S0013-4686(03)00380-3
  24. I. Shao and P. M. Vereechen, C. L. Chien, P. C. Searson, R. C. Cammarata, J. Mater. Res., 17(6), 1412 (2002). https://doi.org/10.1557/JMR.2002.0210
  25. D. Lee, Y. X. Gan, X. Chen, J. W. Kysar, Mater. Sci. Eng. A, 447, 209 (2007). https://doi.org/10.1016/j.msea.2006.11.009

피인용 문헌

  1. Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions vol.13, pp.3, 2014, https://doi.org/10.14773/cst.2014.13.3.102